DOI QR코드

DOI QR Code

The modulation of TRPV4 channel activity through its Ser 824 residue phosphorylation by SGK1

  • Lee, Run-Jeoung (Department of Biology Education, Chungbuk National University) ;
  • Shin, Sung-Hwa (Department of Biology Education, Chungbuk National University) ;
  • Chun, Jae-Sun (Department of Biology Education, Korea National University of Education) ;
  • Hyun, Sung-Hee (Department of Pre-medicine, Eulji University School of Medicine) ;
  • Kim, Yang-Mi (Department of Physiology, College of Medicine, Chungbuk National University) ;
  • Kang, Sang-Sun (Department of Biology Education, Chungbuk National University)
  • Received : 2010.02.17
  • Published : 2010.06.30

Abstract

With the consensus sequence information of the serum glucocorticoid-induced protein kinase-1 (SGK1) phosphorylation site {R-X-R-X-X-(S/T)$\Phi$; where $\Phi$ is any hydrophobic amino acid}, we noticed that the transient receptor potential vanilloid 4 (TRPV4) cation channel, a member of the TRP vanilloid subfamily, harbors the putative SGK1 phosphorylation site (on its Ser 824). We have demonstrated that TRPV4 is an SGK1 authentic substrate protein, with the phosphorylation on the Ser 824 of TRPV4 by SGK1. Further, using TRPV4 mutants (S824A and S824D), we noted that the modification of the Ser 824 activates its $Ca^{2+}$ entry, and sensitizes the TRPV4 channel to 4-$\alpha$-phorbol 12,13-didecanoate (4-${\alpha}PDD$) or heat, simultaneously enhancing its active state. Additionally, we determined that the modification of the Ser 824 controls both its plasma membrane localization and its protein interactions with calmodulin. Thus, we have proposed herein that phosphorylation on the Ser 824 of TRPV4 is one of the control points for the regulation of its functions.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Andrade YN, Fernandes J, Vazquez E, Fernandez-Fernandez JM, Arniges M, Sanchez TM, Villalon M, Valverde MA. 2005. TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol. 168:869-874. https://doi.org/10.1083/jcb.200409070
  2. Becker D, Blase C, Bereiter-Hahn J, Jendrach M. 2005. TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci. 118:2435-2440. https://doi.org/10.1242/jcs.02372
  3. Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M. 2007. Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther. 323:227-235. https://doi.org/10.1124/jpet.107.125435
  4. Cao DS, Yu SQ, Premkumar LS. 2009. Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain. 10:5:1-15.
  5. Casamayor A, Torrance PD, Kobayashi T, Thorner J, Alessi DR. 1999. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr Biol. 9:186-197. https://doi.org/10.1016/S0960-9822(99)80088-8
  6. Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. 1999. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA. 96:2514-2519. https://doi.org/10.1073/pnas.96.5.2514
  7. Chun J, Kwon T, Kim DJ, Park I, Chung G, Lee EJ, Hong SK, Chang SI, Kim HY, Kang SS. 2003. Inhibition of mitogen-activated kinase kinase kinase 3 activity through phosphorylation by the serum- and glucocorticoid-induced kinase 1. J Biochem. 133:103-108. https://doi.org/10.1093/jb/mvg010
  8. Chun J, Kwon T, Lee EJ, Kim CH, Han YS, Hong SK, Hyun S, Kang SS. 2004. 14-3-3 Protein mediates phosphorylation of microtubule-associated protein tau by serum- and glucocorticoid-induced kinase 1. Mol Cells. 18:360-368.
  9. Cohen DM. 2006. Regulation of TRP channels by N-linked glycosylation. Semin Cell Dev Biol. 17:630-637. https://doi.org/10.1016/j.semcdb.2006.11.007
  10. Cuajungco MP, Grimm C, Oshima K, D'hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, PI om ann M, Heller S. 2006. PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem. 281:18753-18762. https://doi.org/10.1074/jbc.M602452200
  11. Earley S, Heppner TJ, Nelson MT, Brayden JE. 2005. TRPV4 forms a novel $Ca^{2+}$ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 97:1270-1279. https://doi.org/10.1161/01.RES.0000194321.60300.d6
  12. Everaerts W, Nilius B, Owsianik G. 2009. The vallinoid transient receptor potential channel Trpv4: from structure to disease. Prog Biophys Mol Biol. 1:1-25.
  13. Fan HC, Zhang X, McNaughton PA. 2009. Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem. 284:27884-27891. https://doi.org/10.1074/jbc.M109.028803
  14. Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA. 2008. IP3 sensitizes TRPV4 channel to the mechanoand osmotransducing messenger 5'-6' -epoxyeicosatrienoic acid. J Cell Biol. 181:143-155. https://doi.org/10.1083/jcb.200712058
  15. Fu Y, Subramanya A, Rozansky D, Cohen DM. 2006. WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol. 290:1305-1314. https://doi.org/10.1152/ajprenal.00391.2005
  16. Garcia-Elias A, Lorenzo IM, Vicente R, Valverde MA. 2008. $IP_{3}$ receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem. 283:31284-31288. https://doi.org/10.1074/jbc.C800184200
  17. Hardie RC. 2007. TRP channels and lipids: from Drosophila to mammalian physiology. J Physiol. 578:9-24. https://doi.org/10.1113/jphysiol.2006.118372
  18. Kobayashi T, Deak M, Morrice N, Cohen P. 1999. Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem J. 1:189-197.
  19. Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. 2004. Regulation of the mouse epithelial $Ca^{2(+)}$ sensor calmodulin. J Biol Chem. 279:28855-28861. https://doi.org/10.1074/jbc.M313637200
  20. Lee EJ, Chun J, Hyun S, Ahn HR, Jeong JM, Hong SK, Hong JT, Chang IK, Jeon HY, Han YS, Auh CK, Park JI, Kang SS. 2008. Regulation Fe65 localization to the nucleus by SGK1 phosphorylation of its Ser566 residue. BMB Rep. 41:41-47. https://doi.org/10.5483/BMBRep.2008.41.1.041
  21. Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S. 2000. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 103:525-535. https://doi.org/10.1016/S0092-8674(00)00143-4
  22. Maiyar AC, Huang AJ, Phu PT, Cha HH, Firestone GL. 1996. p53 stimulates promoter activity of the sgk. Serum/glucocorticoid-inucible serin/threonine protein kinase gene in rodent mammary epithelial cells. J Biol Chem. 271:12414-12422. https://doi.org/10.1074/jbc.271.21.12414
  23. Murray JT, Cummings LA, Bloomberg GB, Cohen P. 2005. Identification of different specificity requirements between SGK1 and PKBalpha. FEBS Lett. 579:991-994. https://doi.org/10.1016/j.febslet.2004.12.069
  24. Nilius B, Watanabe H, Vriens J. 2003. The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflugers Arch. 446:298-803. https://doi.org/10.1007/s00424-003-1028-9
  25. Saito M, Hanson PI, Schlesinger P. 2007. Luminal chloride-dependent activation of endosome calcium channels: patch clamp study of enlarged endosomes. J Biol Chem. 282:27327-27333. https://doi.org/10.1074/jbc.M702557200
  26. Strotmann R, Schultz G, Plant TD. 2003. Ca-dependent potentiation of thenonselective cation channel TRPV4 is mediated by a Csterminal calmodulin binding site. J Biol Chem. 278:26541-26549. https://doi.org/10.1074/jbc.M302590200
  27. Suzuki M, Hirao A, Mizuno A. 2003a. Microtubule-associated [corrected] protein 7 increase the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem. 278:51448-51453. https://doi.org/10.1074/jbc.M308212200
  28. Suzuki M, Mizuno A, Kodaira K, Imai M. 2003b. Impaired pressure sensation in mice lacking TRPV4. J Biol Chem. 278:22664-22668. https://doi.org/10.1074/jbc.M302561200
  29. Tessier M, Woodgett JR. 2006. Serum and Glucocorticoid-regulated protein kinases: variations on a theme. J Cell Biochem. 98:1391-1407. https://doi.org/10.1002/jcb.20894
  30. van de Graaf SF, Hoenderop JG, Bindels RJ. 2006. Regulation TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol. 290:1295-1302. https://doi.org/10.1152/ajprenal.00443.2005
  31. Vennekens R, Owsianik G, Nilius B. 2008. Vanilloid transient receptor potential cation channels: an overview. Curr Pharm Des. 14:18-31. https://doi.org/10.2174/138161208783330763
  32. Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R. 2006. TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium. 36:19-28.
  33. Vriens J, Owsianik G, Janssens A, Voets T, Nilius B. ?2007. Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem. 282:12796-12803. https://doi.org/10.1074/jbc.M610485200
  34. Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B. 2002. Activation of TRPV4 channels (hVRL-2/mTRPl2) by phorbol derivatives. J Biol Chem. 277:13569-13577. https://doi.org/10.1074/jbc.M200062200
  35. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. 2003. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV 4 channels. Nature. 424:434-438. https://doi.org/10.1038/nature01807
  36. Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL. 1993. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol. 13:2031-2040. https://doi.org/10.1128/MCB.13.4.2031
  37. Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G. 2009. Tyrosin phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem. 284:2923-2933. https://doi.org/10.1074/jbc.M805357200
  38. Xu F, Satoh E, Iijima T. 2003. Protein kinase C-mediated $Ca^{2+}$ entry in HEK 293cells transiently expressing human TRPV4. Br J Pharmacol. 140:413-421. https://doi.org/10.1038/sj.bjp.0705443
  39. Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S, Hara Y, Tominaga M, Shimizu S, Sato Y, Mori Y. 2006. Nitric oxide activates TRP channels by cysteine S-nitryosylation. Nat Chern Biol. 2:596-607. https://doi.org/10.1038/nchembio821

Cited by

  1. Transient receptor potential melastatin type 7 channels are involved in zinc-induced apoptosis in gastric cancer vol.15, pp.2, 2010, https://doi.org/10.1080/19768354.2011.577558
  2. The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channelsin vitroand painin vivo : Bafetinib inhibits PAR2-TRPV4 coupling vol.171, pp.16, 2010, https://doi.org/10.1111/bph.12750
  3. A Functional Kinase Short Interfering Ribonucleic Acid Screen Using Protease-Activated Receptor 2-Dependent Opening of Transient Receptor Potential Vanilloid-4 vol.16, pp.1, 2018, https://doi.org/10.1089/adt.2017.799
  4. Modulation of the Oxidative Stress and Lipid Peroxidation by Endocannabinoids and Their Lipid Analogues vol.7, pp.7, 2010, https://doi.org/10.3390/antiox7070093
  5. Modulating the Mechanical Activation of TRPV4 at the Cell-Substrate Interface vol.8, pp.None, 2021, https://doi.org/10.3389/fbioe.2020.608951