초록
WSN에서의 커버리지 문제는 센싱 커버리지에 대한 요구조건을 만족시키기 위해 필요한 최소한의 활동 센서(active sensor)의 개수로 공식화될 수 있다. 일반적으로 확률적 기하학을 이용하여 WSN의 커버리지 분석을 수행하기 때문에 센싱 모델이 커버리지 분석의 핵심 요소로 간주된다. 따라서, 커버리지 분석의 정확도는 어떠한 센싱 모델을 가정하였느냐에 따라 달라질 수 있으며 분석에 사용된 센싱 모델이 얼마나 실 센싱 환경에 가깝게 특성화 되었느냐에 따라 달라진다. 본 논문에서는 Boolean 모델, Exponential 모델, Hybrid 모델 등 다양한 형태의 결정적 혹은 확률적 센싱 모델들을 조사하고 각각의 센싱 모델에 따라 일정 영역을 센싱할 수 있는 최소한의 센서 개수를 도출할 수 있는 수리적 분석을 수행하였으며 이를 통해 성능을 비교 평가하였다.
In Wireless Sensor Networks (WSNs), blanket (area) coverage analysis is generally carried to find the minimum number of active sensor nodes required to cover a monitoring interest area with the desired fractional coverage-threshold. Normally, the coverage analysis is performed using the stochastic geometry as a tool. The major component of such coverage analysis is the assumed sensing model. Hence, the accuracy of such analysis depends on the underlying assumption of the sensing model: how well the assumed sensing model characterizes the real sensing phenomenon. In this paper, we review the coverage analysis for different deterministic and probabilistic sensing models like Boolean and Shadow-fading model; and extend the analysis for Exponential and hybrid Boolean-Exponential model. From the analytical performance comparison, we demonstrate the redundancy (in terms of number of sensors) that could be resulted due to the coverage analysis based on the detection capability mal-characterizing sensing models.