DOI QR코드

DOI QR Code

Localization of Mobile Robot Using SURF and Particle Filter

SURF와 Particle filter를 이용한 이동 로봇의 위치 추정

  • 문현수 (군산대학교 제어로봇시스템공학과) ;
  • 주영훈 (군산대학교 제어로봇시스템공학과)
  • Received : 2010.04.03
  • Accepted : 2010.08.01
  • Published : 2010.08.25

Abstract

In this paper, we propose the localization method of mobile robot using SURF(Speeded-Up Robust Features) and Particle filter. The proposed method is as follows: First, we seek the Landmark from the obtained image using SURF in order to find the first rigorous position of mobile robot. Second, we obtain the distance from obstacles using ultrasonic sensors in order to create the relative position of mobile robot. And then, we estimate the localization of mobile robot using Particle filter about movement of mobile robot. Finally, we show the feasibility of the proposed method through some experiments.

본 논문에서는 SURF와 Particle filter를 이용한 이동로봇의 위치 추정 방법을 제안한다. 제안한 방법은 다음과 같다: 먼저, 이동 로봇의 위치를 찾기 위해 SURF 알고리증을 이용하여 카메라로부터 획득한 영상을 분석한다. 두 번째, 획득한 영상으로부터 이동로봇의 상대적인 위치를 알기 위해 이동로봇에 설치되어 있는 초음파 센서를 이용하여 주변 환경과의 거리를 측정한다. 그리고 측정된 센서 값들을 기반으로 하여 이동 로봇의 위치를 추정하는데 있어서 오차를 줄이고자 위치 추정에 많이 사용되는 Particle filter를 이용하여 이동 로봇의 위치를 추정한다. 마지막으로, 본 논문에서 제안한 방법은 실험을 통해 그 응용 가능성을 증명한다.

Keywords

References

  1. F. Lu and E. Milios, "Globally consistent range scan alignment for environment mapping" Autonomous Robots, Vol. 43, pp 333-349, 1997
  2. D. Fox, W. Burgard, and S. Thrun. "Active markov localization for mobile robots", Robotics and Autonomous Systems, Vol. 25, pp. 195-207. 1998 https://doi.org/10.1016/S0921-8890(98)00049-9
  3. S. Thrun, D. Fox, W. Burgard and F. Dellaert, "Robust Monte Carlo localization for mobile robots", Proc. of National Conference on Articicial Inteeligence, Vol. 128, 2001
  4. D. G Lowe, and S. Se, "Vision-Based global localization and mapping for mobile robots", Proc. of IEEE Transaction on Robotics, Vol 21, pp 217-226, June, 2005
  5. J. Wolf, W. Burgard, and H. Burkhardt, "Robust vision-based localization by combining an image retrival system with Monte Carlo localization", IEEE Transaction on Robotics, vol. 21, No. 2, April, 2005
  6. P. Zingaretti and E. Frontoni, "Vision and sonar fusion for mobile robot localization in aliased environments", Mechatronic and Embedded Systems and Applications, Proc. of the 2nd IEEE/ASME International Conference on, Aug, 2006
  7. D. G. Lowe, "Distinctive image features from scale invariant keypoints", International Journal of Computer Vision, Vol. 60, No. 2 pp. 91-110, 2004, 4. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  8. H. Bay, E. Andreas, T. Tuytelaars and L. V. Gool, "Speeded-up robust features", Computer Vision and Image Understanding, Vol 110, Issue 3, pp 346-359, June 2008 https://doi.org/10.1016/j.cviu.2007.09.014
  9. A. Doucet, S. Godsill and S. Andrieu, "On sequential Monte Carlo sampling methods for Bayesian filtering", Statics and Computing, pp. 197-208, Oct. 2000
  10. D. Fox, W. Burgard, F. Dellaert and S. Thrun, "Monte Carlo localization: Efficient position estimation for mobile robots,", Proc. of the National Conference on Artificial Intelligence, 1999
  11. C. Kwok, D. Fox, and M. Meila, "Real-time Particle filters", Proc of the IEEE, Vol. 92, pp. 469-484, 2004 https://doi.org/10.1109/JPROC.2003.823144
  12. S. Thrun, D. Fox, W. Burgard and F. Dellaert "Robust Monte Carlo localization for mobile robots", Artificial Intelligence, summer 2001
  13. H. Zhou and S. Sakane "Sensor planning for mobile robot localization - A hierarchical approach using Bayesian network and a Particle Filter", IEEE Transactions on Robotics, Vol. 24, No. 2, April, 2008