DOI QR코드

DOI QR Code

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da (School of Materials Science and Engineering, Dalian University of Technology) ;
  • Chen, Tianyun (School of Materials Science and Engineering, Dalian University of Technology) ;
  • Zhang, Weiping (School of Materials Science and Engineering, Dalian University of Technology) ;
  • Zhao, Ningjiu (Department of Chemistry, Hebei Normal University of Sciences and Technology) ;
  • Wang, Dongjun (Department of Chemistry, Hebei Normal University of Sciences and Technology)
  • Received : 2010.05.10
  • Accepted : 2010.08.19
  • Published : 2010.10.20

Abstract

Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

Keywords

References

  1. Chu, T. S.; Han, K. L. Phys. Chem. Chem. Phys. 2008, 10, 2431. https://doi.org/10.1039/b715180b
  2. Schinke, R.; Lester, W. A. J. Chem. Phys. 1980, 72, 3754. https://doi.org/10.1063/1.439589
  3. Kuntz, P. J.; Niefer, B. I.; Sloan, J. J. J. Chem. Phys. 1988, 88, 3629. https://doi.org/10.1063/1.453913
  4. Schatz, G. C.; Aioannou, A.; Pederson, L. A.; Harding, L. B.; Hollebeek, T.; Ho, T. S.; Rabitz, H. J. Chem. Phys. 1997, 107, 2340. https://doi.org/10.1063/1.474614
  5. Butler, J. E.; Jursich, G. M.; Waston, I. A.; Wisenfeld, J. R. J. Chem. Phys. 1986, 84, 5365. https://doi.org/10.1063/1.449947
  6. Pierce, B. M.; Bennett, J. A.; Birge, R. R. J. Chem. Phys. 1982, 77, 6343. https://doi.org/10.1063/1.443808
  7. Fitzcharles, M. S.; Schatz, G. C. J. Phys. Chem. 1986, 90, 3634. https://doi.org/10.1021/j100407a034
  8. Alexander, A. J.; Aoiz, F. J.; Brouard, M.; Simons, J. P. Chem. Phys. Lett. 1996, 256, 561. https://doi.org/10.1016/0009-2614(96)00506-4
  9. Badenhoop, K.; Koizumi, K.; Schatz, G. C. J. Chem. Phys. 1989, 91, 142. https://doi.org/10.1063/1.457502
  10. Zhao, G. J.; Liu, J. Y.; Zhou, L. C.; Han, K. L. J. Phys. Chem. B 2007, 111, 8940. https://doi.org/10.1021/jp0734530
  11. Alagia, M.; Balucani, N.; Cartechini, L.; Casavecchia, P.; Volpi, G. G.; Kuntz, P. J.; Sloan, J. J. J. Chem. Phys. 1998, 108, 6698. https://doi.org/10.1063/1.476085
  12. Ahmed, M.; Peterka, D. S.; Suits, A. Chem. Phys. Lett. 1999, 301, 372. https://doi.org/10.1016/S0009-2614(99)00048-2
  13. Hsu, Y. T.; Liu, K. J. Chem. Phys. 1997, 107, 1664. https://doi.org/10.1063/1.474518
  14. Dobbyn, A. J.; Knowles, P. J. Faraday Discuss. 1998, 110, 247.
  15. Liu, X.; Lin, J. L.; Harich, S.; Yang, X. J. Chem. Phys. 2000, 113, 1325. https://doi.org/10.1063/1.481923
  16. Ho, T. S.; Hollebeek, T.; Rabitz, H.; Harding, L. B.; Schatz, G. C. J. Chem. Phys. 1996, 105, 10472.
  17. Dobbyn, A. J.; Knowles, P. J. Mol. Phys. 1997, 91, 1107
  18. Chu, T. S.; Zhang, X.; Han, K. L. J. Chem. Phys. 2005, 122, 214301. https://doi.org/10.1063/1.1924507
  19. Hsu, Y. T.; Liu, K.; Pederson, L. A.; Schatz, G. C. J. Chem. Phys. 1999, 111, 7931. https://doi.org/10.1063/1.480128
  20. Koppe, S.; Laurent, T.; Naik, P. D.; Volpp, H. R.; Wolfrum, J.; Arusi-Parpar, T.; Bar, I.; Rosenwaks, S. Chem. Phys. Lett. 1993, 214, 546. https://doi.org/10.1016/0009-2614(93)85681-D
  21. Chu, T. S.; Zhang, Y.; Han, K. L. Int. Rev. Phys. Chem. 2006, 25, 201. https://doi.org/10.1080/01442350600677929
  22. Althorpe, S. C.; Clary, D. C. Annu. Rev. Phys. Chem. 2003, 54, 493. https://doi.org/10.1146/annurev.physchem.54.011002.103750
  23. Song, J. B.; Gislason, E. A. Chem. Phys. 1996, 202, 1. https://doi.org/10.1016/0301-0104(95)00285-5
  24. Johnson, B. R.; Winter, N. W. J. Chem. Phys. 1977, 66, 4116. https://doi.org/10.1063/1.434485
  25. Zhao, G. J.; Han, K. L. Biophys. J. 2008, 94, 38. https://doi.org/10.1529/biophysj.107.113738
  26. Fano, U.; J. Macek, H. Rev. Mod. Phys. 1973, 45, 553. https://doi.org/10.1103/RevModPhys.45.553
  27. Baenwell, J. D.; Loeser, J. G.; Herschbach, D. R. J. Phys. Chem. 1983, 87, 2781. https://doi.org/10.1021/j100238a017
  28. Han, K. L.; He, G. Z.; Lou, N. Q. J. Chem. Phys. 1996, 105, 8699. https://doi.org/10.1063/1.472651
  29. Zhao, G. J.; Han, K. L.; Lei, Y. B.; Dou, Y. J. Chem. Phys. 2007, 127, 094307. https://doi.org/10.1063/1.2768347
  30. Zhang, Y.; Xie, T. X.; Han, K. L.; Zhang, J. Z. H. J. Chem. Phys. 2003, 119, 12921. https://doi.org/10.1063/1.1626537
  31. Zhao, G. J.; Han, K. L. Chem Phys Chem 2008, 9, 1842. https://doi.org/10.1002/cphc.200800371
  32. Xie, T. X.; Zhang, Y.; Zhao, M. Y.; Han, K. L. Phys. Chem. Chem. Phys. 2003, 5, 2034. https://doi.org/10.1039/b300763d
  33. Zhao, G. J.; Liu, Y. H.; Han, K. L.; Dou, Y. Chem. Phys. Lett. 2008, 453, 29. https://doi.org/10.1016/j.cplett.2008.01.015
  34. Soep, B., Vetter, R. J. Phys. Chem. 1995, 99, 13569. https://doi.org/10.1021/j100037a600
  35. Loesch, H. J. Phys. Chem. 1997, 101, 7461. https://doi.org/10.1021/jp972746y
  36. Brouard, M.; Duxon, S. P.; Simons, J. P. Isr. J. Chem. 1994, 34, 67. https://doi.org/10.1002/ijch.199400011
  37. Kim, H. L.; Wickramaaratchi, M. A.; Zheng, X.; Hall, J. E. J. Chem. Phys. 1994, 101, 2033. https://doi.org/10.1063/1.467712
  38. Li, Y. M. Mol. Phys. 2009, 107, 1331. https://doi.org/10.1080/00268970902873539
  39. Chen, T. Y.; Zhang, W. P.; Wang, X. Q.; Zhao, G. J. Chem. Phys. 2009, 365, 158. https://doi.org/10.1016/j.chemphys.2009.10.012
  40. Liu, Y. F.; Gao, Y. L.; Shi, D. H.; Sun, J. F. Chem. Phys. 2009, 364, 46. https://doi.org/10.1016/j.chemphys.2009.08.010
  41. Zhao, G. J.; Han, K. L. J. Phys. Chem. A 2007, 111, 2469. https://doi.org/10.1021/jp068420j
  42. Ju, L. P.; Han, K. L.; Zhang, J. Z. H. J. Comput. Chem. 2009, 30, 305. https://doi.org/10.1002/jcc.21032
  43. Han, K. L.; Zheng, X. L.; Sun, B. F.; He, G. Z. Chem. Phys. Lett. 1991, 181, 474. https://doi.org/10.1016/0009-2614(91)90383-K
  44. Muckerman, J. T. J. Chem. Phys. 1971, 54, 1155. https://doi.org/10.1063/1.1674951
  45. Miranda, M. P. D.; Clary, D. C.; Castillo, J. F.; Manolopoulos, D. E. J. Chem. Phys. 1998, 108, 3142. https://doi.org/10.1063/1.476369
  46. Brouard, M.; Lambert, H. M.; Rayner, S. P.; Simons, J. P. Mol. Phys. 1996, 89, 403.
  47. Honvault, P.; Launay, J. M. J. Chem. Phys. 2001, 114, 1057. https://doi.org/10.1063/1.1338973
  48. Alexander, A. J.; Aoiz, F. J.; Bañares, L.; Brouard, M.; Short, J.; Simons, J. P. J. Phys. Chem. 1997, 101, 7544. https://doi.org/10.1021/jp971123h

Cited by

  1. Reaction vol.121, pp.9, 2017, https://doi.org/10.1021/acs.jpca.7b00722
  2. reaction at low temperature vol.20, pp.6, 2018, https://doi.org/10.1039/C7CP07843A
  3. Stereodynamics of chemical reactions: quasi-classical, quantum and mixed quantum-classical theories vol.10, pp.2, 2010, https://doi.org/10.2478/s11534-011-0107-3
  4. Theoretical Study of Reagent Rotational Excitation Effect on the Stereodynamics of H + LiF→HF+Li Reaction vol.27, pp.1, 2014, https://doi.org/10.1063/1674-0068/27/01/39-44
  5. The kinetics of X + H2 reactions (X = C(1D), N(2D), O(1D), S(1D)) at low temperature: recent combined experimental and theoretical investigations vol.40, pp.4, 2010, https://doi.org/10.1080/0144235x.2021.1976927