• 제목/요약/키워드: OH$+H reaction

Search Result 1,216, Processing Time 0.027 seconds

Ab initio Study on the Complex Forming Reaction of OH and H2O in the Gas Phase

  • Park, Jong-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.2
    • /
    • pp.158-164
    • /
    • 2015
  • The estimation of the concentration of hydroxyl radical (OH) in the atmosphere is essential to build atmospheric models and to understand the mechanisms of the reactions involved in OH. Although water vapor is one of the most abundant species in the troposphere, only a few studies have been performed for the reaction of OH and water vapor. Here I demonstrate an ab initio study on the complex forming reation of OH with $H_2O$ in the gas phase performed based on density functional theory to calculate the reaction rate and the energy states of the reactant and the OH-$H_2O$ complex. The structure of the complex, which belongs to the Cs point group, was optimized at global minima. The transition state was not found at the B3LYP and MP2 levels of theory. Rate constants of the forward and the reverse reactions were calculated as $1.1{\times}10^{-16}cm^3\;molecule^{-1}\;s^{-1}$ and $5.3{\times}10^9\;s^{-1}$, respectively. The extremely slow rates of complex forming reaction and the resulting hydrogen atom exchange reaction of OH and $H_2O$, which are consistent with experimentally determined values, imply a negligible possibility of a change in OH reactivity through the title reaction.

Mechanism of DNA Cleavage Induced by Fe2+ Autoxidation

  • Kim, Jong-Moon;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.964-972
    • /
    • 2011
  • This work investigated the difference between $Fe^{2+}$ autoxidation-induced and Fenton-type cleavage of pBR322 plasmid DNA. $^{\cdot}OH$ generation reactions in the absence and presence of $H_2O_2$ under various conditions were also investigated. Although both the $Fe^{2+}$ autoxidation and Fenton-type reactions showed DNA cleavage and $^{\cdot}OH$ generation, there were significant differences in their efficiencies and reaction rates. The rate and efficiency of the cleavage reaction were higher in the absence of 1.0 mM of $H_2O_2$ than in its presence in 20 mM phosphate buffer. In contrast, the $^{\cdot}OH$ generation reaction was more prominent in the presence of $H_2O_2$ and showed a pH-independent, fast initial reaction rate, but the rate was decreased in the absence of $H_2O_2$ at across the entire tested pH range. Studies using radical scavengers on DNA cleavage and $^{\cdot}OH$ generation reactions in both the absence and presence of $H_2O_2$ confirmed that both reactions spontaneously involved the active oxygen species $^{\cdot}OH$, ${O_2}^{\cdot-}$, $^1O_2$ and $H_2O_2$, indicating that a similar process may participate in both reactions. Based on the above observations, a new mechanism for the $Fe^{2+}$ autoxidation-induced DNA cleavage reaction is proposed.

Proton Transfer Reactions and Ion-Molecule Reactions of Ionized XCH2CH2Y (X and Y = OH or NH2)

  • Choi, Sung-Seen;So, Hun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.539-544
    • /
    • 2006
  • Proton transfer reactions and ion-molecule reactions of bifunctional ethanes of $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$ were studied using Fourier transform mass spectrometry (FTMS). The rate constants for proton transfer reactions between the fragment ions and neutral molecules were obtained from the temporal variation of the ion abundances. The rate constants were consistent with the heats of reaction. The fastest proton transfer reactions were the reactions of $CH_2N^+$, $CHO^+$, and $CH_3O^+$ for $H_2NCH_2CH_2NH_2$, $H_2NCH_2CH_2OH$, and $HOCH_2CH_2OH$, respectively. The $[M+13]^+$ ion was formed by the ion-molecule reaction between $H_2C=NH_2 ^+$ or $H_2C=OH^+$ and the neutral molecule. The major product ions generated from the ion-molecule reactions between the protonated molecule and neutral molecule were $[2M+H]^+$, $[M+27]^+$, and $[M+15]^+$.

Dynamics of OH Production in the Reaction of O(1D2) with Cyclopropane

  • Jang, Sungwoo;Jin, Sung Il;Kim, Hong Lae;Kim, Hyung Min;Park, Chan Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1706-1712
    • /
    • 2014
  • The OH($X^2{\Pi}$, ${\upsilon}^{\prime\prime}=0,1$) internal state distribution following the reaction of electronically excited oxygen atom ($O(^1D_2)$) with cyclo-$C_3H_6$ has been measured using laser-induced fluorescence, and compared with that following the reaction of $O(^1D_2)$ with $C_3H_8$. The overall characteristics of the OH internal energy distributions for both reactions were qualitatively similar. The population propensity of the ${\Pi}(A^{\prime})$ ${\Lambda}$-doublet sub-level suggested that both reactions proceeded via an insertion/elimination mechanism. Bimodal rotational population distributions supported the existence of two parallel mechanisms for OH production, i.e., statistical insertion and nonstatistical insertion. However, detailed analysis revealed that, despite the higher exoergicity of the reaction, the rotational distribution of the OH following the reaction of $O(^1D_2)$ with $C_3H_8$ was significantly cooler than that with cyclo-$C_3H_6$, especially in the vibrational ground state. This observation was interpreted as the effect of the flexibility of the insertion complex and faster intramolecular vibrational relaxation (IVR).

Theoretical Studies on the Alkylidene Silylenoid H2C = SiLiF and Its Insertion Reaction with R-H (R = F, OH, NH2)

  • Tan, Xiaojun;Wang, Weihua;Li, Ping;Li, Qingyan;Cheng, Lei;Wang, Shufen;Cai, Weiwang;Xing, Jinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1349-1354
    • /
    • 2010
  • The geometries and isomerization of the alkylidene silylenoid $H_2C$ = SiLiF as well as its insertion reactions with R-H (R = F, OH, $NH_2$) have been systematically investigated at the B3LYP/6-311+$G^*$ level of theory. The potential barriers of the three insertion reactions are 97.5, 103.3, and 126.1 kJ/mol, respectively. Here, all the mechanisms of the three reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted silylene ($H_2C$ = SiHR) and LiF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the three reactions are -36.4, -24.3, and 3.7 kJ/mol, respectively. Compared with the insertion reaction of $H_2C$ = Si: and R-H (R = F, OH and $NH_2$), the introduction of LiF makes the insertion reaction occur more easily. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the three insertion reactions should be as follows: H-F > H-OH > H-$NH_2$.

Synthesis and Crystal Structure of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System CaO-$C_2 H_5 OH$-$CO_2$ (CaO-$C_2 H_5 OH$-$CO_2$계의 기.액반응에 의한 비정질 탄산칼슘의 합성 및 결정구조)

  • Im, Jae-Seok;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.97-109
    • /
    • 2004
  • The synthesis and crystal structure of amorphous calcium carbonate obtained from gas-liquid reaction of CaO-$C_2 H_5 OH$-$CO_2$ system according to change of added amount of calcium oxide by blowing $CO_2$ gas and reaction time using ethanol and ethylene glycol were investigated by electric conductivity, X-ray diffraction, and scanning electron microscope. The powdery or gelatinous phases were prepared by passing $CO_2$ gas at a flow rate of 1$\ell$/min into the suspensions containing 10~40g of CaO in mixing solutions 900ml of $C_2 H_5 OH$- and 100ml of ethylene glycol. By rapid filtration and drying the both phases at $60^{\circ}C$ under reduced pressure, the phases converted to the spherical vaterite and amorphous phase. The stable phase of amorphous calcium carbonate(ACC) was formed in the region pH 7-9 but the formation regions of amorphous phase were remarkably affected by pH in the mother liquor. It seems that a part of ACC changed into chain calcite as an intermediate products. The initial reactants prior to the formation of precipitated calcium carbonate is ACC. And ACC is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. Especially ACC was produced or gelatinous phase which precipitated from the reaction of CaO-$C_2 H_5 OH$-$CO_2$ system.

  • PDF

A DFT Study for the Reaction Pathway(s) of Polycyclic Aromatic Hydrocarbons I: Phenanthrene Degradation with two OH Radicals (다고리 방향족 탄화수소의 반응 경로에 대한 DFT 연구 I: 2개의 OH 라디칼에 의한 페난트렌의 분해 반응)

  • Lee, Min-Joo;Lee, Byung-Dae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.9-14
    • /
    • 2021
  • In this study, the DFT calculation was performed using the B3LYP/6-31G(d,p) basis sets for the reaction process in which phenanthrene decomposes due to the chain reaction of two OH radicals on phenanthrene in the gaseous state of 298 K at 1 atm. As a result of the calculation, even when two OH radicals act on phenanthrene in a chain, the reaction for producing phenanthren-9-ol is predicted to be more advantageous than the reaction for producing phenanthren-1-ol. On the other hand, it was predicted that the OH addition process at room temperature would be advantageous for the priority of the OH addition and H abstraction process.

A Study on the Treatment of Refractory Organics by Redox Reaction of Cu-Zn Metal Alloy (Cu-Zn 금속 합금의 산화.환원 반응에 의한 난분해성 COD처리에 관한 연구)

  • Song, Ju-Yeong;Park, Ji-Won;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.166-172
    • /
    • 2013
  • The purpose of this study is to evaluate the treatment ability of refractory organics in hot rolling precess waste water by redox(reduction and oxidation) reaction. Metal is oxidized in an aqueous solution to generate electron which can reduce water to generate hydroxy radical. These hydroxy radical is very effective to conduct hydrogen abstraction reaction and addition reaction to the carbon - carbon unsaturated link. The surface area of metal alloy reaction material is more than enough to get equilibrium at a single treatment. The efficiency of COD treatment by redox reaction showed maximum at mild pH of pH 7 and pH 6. But it was not effective in acidic atmosphere of pH 3, 4, 5 and basic atmosphere of pH 8 or over. Redox reaction system in much more helpful in a commercial coagulation sedimentation treatment than exclusive system.

Synthesis of Vaterite Powders with a Spherical Shape by the Precipitation Method (침전법에 의한 구형 Vaterite분말의 합성)

  • 윤봉구;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1208-1212
    • /
    • 2003
  • CaCO$_3$ powders were synthesized by aqueous solution reaction of CaC1$_2$ㆍ2$H_2O$-(NH$_4$)$_2$CO$_3$ system with NH$_4$OH at 45$^{\circ}C$ and pHs 8, 9, 10, and 11 and in the concentration range of 0.1∼5 M and its polymorphism, morphology and size were investigated. In order to investigate the influence of pH on nucleation, pH was adjusted before and after reaction respectively. When pH was adjusted after reaction a formation ratio of vaterite was increased with increasing pH and concentration but vaterite was formed with calcite. But, when pH was adjusted before reaction, the formation rate of vaterite was increased with increasing pH and concentration. resulting in a phase-pure vaterite with a spherical shape and 2∼5 $\mu\textrm{m}$ in size. It was found that solubility of alkaline vaterite was decreased with increasing OH- ions in the high pH solution. When pH was adjusted before nucleation in the high concentration range, in particular, decreasing of solubility disturbed transformation of initially formed numerous vaterite to calcite.

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF