Preparation and Properties of $TiO_2$ Films for Solar Energy Utilization

태양에너지이용을 위한 $TiO_2$ 박막의 제작과 특성

  • 이길동 (경기대학교 자연과학대학 전자물리학과)
  • Received : 2010.05.06
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

$TiO_2$ thin films for solar energy utilization were prepared on ITO coated glass by r.f magnetron sputtering with variations of working pressure, oxygen flow rate and annealing temperature. Ion insertion and extraction reaction, and ion storage properties of films were investigated by using a cyclic voltammetry. Transmittance of thin films in as-prepared, colored and bleached states was measured by UV-VIS spectrophotometer. The samples deposited in our sputtering conditions showed poor electrochromic properties. Improvement in ion storage properties of $TiO_2$ thin film was observed after annealing at temperature of $400^{\circ}C$ in air for 2 hours. It was found that $TiO_2$ thin film in electrochromic device could be used as a passive counter-electrode.

Keywords

References

  1. L. Zhang, S. Xiong, J. Ma and X. Lu, Sol. Energy Mater. and Sol. Cells 93, 625 (2009). https://doi.org/10.1016/j.solmat.2008.12.021
  2. K. D. Lee, J. Korean Sol. Energy Soc. 26, 55 (2006).
  3. T. S. Yang, Z. R. Lin and M. S. Wong, Appl. Surf. Sci. 252, 2029 (2005). https://doi.org/10.1016/j.apsusc.2005.03.170
  4. I. Porqueras and E. Bertran, Thin Solid Films 41 398-399, (2001).
  5. R. Sivakumar, C. S. Gopinath, M. Jayachandran and C. Sanjeeviraja, Current Appl. Phys. 7, 76 (2007). https://doi.org/10.1016/j.cap.2005.12.001
  6. R. Azimirad, O. Akhavan and A. Z. Moshfegh, Thin Solid Films 515, 644 (2006). https://doi.org/10.1016/j.tsf.2005.12.229
  7. M. Deepa, D. P. Singh, S. M. Shivaprasad and S. A. Agnihotry, Current Appl. Phys. 7, 220 (2007). https://doi.org/10.1016/j.cap.2006.06.001
  8. E. Syrrakou, S. Papaefthimiou, N. Skarpentzos and P. Yianoulis, Ionics 11, 281 (2005). https://doi.org/10.1007/BF02430390
  9. L. Kullman, A. Azens, A. Gutarra and C. G. Granqvist, Ionics 1, 338 (1995). https://doi.org/10.1007/BF02390216
  10. A. Azens and C. G. Granqvis J. Solid State Electrochem 7, 64 (2003). https://doi.org/10.1007/s10008-002-0313-4
  11. E. S. Lee, D. L. DiBartolomeo, Sol. Energy Mater. and Sol Cells 71, 465 (2002). https://doi.org/10.1016/S0927-0248(01)00101-5
  12. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier Science, Amsterdam, The Netherlands, (1995).
  13. J. R. Platt and J. Chem Phys. 34, 862 (1961). https://doi.org/10.1063/1.1731686
  14. S. K. Deb and Philos. Mag. 27, 801 (1973). https://doi.org/10.1080/14786437308227562
  15. P. S. Patil, S. H. Mujawar, A. I. Inamdar and S. B. Sadale, Appl. Surf. Science, 250, 117 (2005). https://doi.org/10.1016/j.apsusc.2004.12.042
  16. M. M. Uplane, S. H. Mujawar, A. I. Inamdar, P. S. Shinde, A. C. Sonavane and P. S. Patil, Appl. Surf. Science 253, 9365 (2007). https://doi.org/10.1016/j.apsusc.2007.05.069
  17. K. D. Lee, J. Korean Phys. Soc. 46, 1383 (2005).
  18. D. A. Wruck, M. A. Dixon, M. Rubin and S, N. Bogy, J. Vac. Sci. Technol. 4A, 2170 (1991).
  19. L. J. Meng and M. P. dos Santos, Thin Solid Films 226, 22 (1993). https://doi.org/10.1016/0040-6090(93)90200-9