DOI QR코드

DOI QR Code

Comparison of the Dose of the Normal Tissues among Various Conventional Techniques for Whole Brain Radiotherapy

여러 통상적인 전뇌방사선치료 기법에서의 정상조직의 조사선량 비교

  • Kang, Min-Kyu (Department of Radiation Oncology, Yeungnam University College of Medicine)
  • 강민규 (영남대학교 의과대학 방사선종양학교실)
  • Received : 2009.12.21
  • Accepted : 2010.04.19
  • Published : 2010.06.30

Abstract

Purpose: To compare radiation dose of the brain and lens among various conventional whole brain radiotherapy (WBRT) techniques. Materials and Methods: Treatment plans for WBRT were generated with planning computed tomography scans of 11 patients. A traditional plan with an isocenter located at the field center and a parallel anterior margin at the lateral bony canthus was generated (P1). Blocks were automatically generated with a 1 cm margin on the brain (5 mm for the lens). Subsequently, the isocenter was moved to the lateral bony canthus (P2), and the blocks were replaced into the multileaf collimator (MLC) with a 5 mm leaf width in the craniocaudal direction (P3). For each patient plan, 30 Gy was prescribed at the isocenter of P1. Dose volume histogram (DVH) parameters of the brain and lens were compared by way of a paired t-test. Results: Mean values of $D_{max}$ and $V_{105}$ of the brain in P1 were 111.9% and 23.6%, respectively. In P2 and P3, $D_{max}$ and $V_{105}$ of the brain were significantly reduced to 107.2% and 4.5~4.6%, respectively (p<0.001). The mean value of $D_{mean}$ of the lens was 3.1 Gy in P1 and 2.4~2.9 Gy in P2 and P3 (p<0.001). Conclusion: WBRT treatment plans with an isocenter located at the lateral bony canthus have dosimetric advantages for both the brain and lens without any complex method changes.

목 적: 여러 통상적인 전뇌방사선치료 기법에서의 뇌와 수정체의 방사선 조사선량을 비교하고자 하였다. 대상 및 방법: 전뇌방사선치료를 위한 치료계획을 11명의 환자를 대상으로 컴퓨터단층촬영 영상을 이용하여 다음과 같이 수립하였다. 중심점이 조사영역의 중앙에 위치하고 가쪽눈구석(lateral bony canthus)에서 양측 빔이 평행한 통상적인 계획을 수립하고, 뇌에서 1 cm (렌즈에 대해서는 5 mm)의 여유로 차폐물을 생성하였다(P1). 이후 중심점을 가쪽눈구석으로 옮기고(P2), 조준기를 90도 회전시킨 후 5 mm 두께의 다엽조준기로 차폐를 하였다(P3). 각 환자의 모든 계획에서 P1의 중심점에 30 Gy를 처방하였다. 뇌와 수정체의 선량 지표들은 paired t-test를 이용하여 비교하였다. 결 과: 뇌의 $D_{max}$$V_{105}$는 P1에서 111.9%와 23.6%였다. 뇌의 $D_{max}$$V_{105}$는 P2와 P3에서 유의하게 감소하였는데, 그 값은 각각 107.2%와 4.5~4.6%였다(p<0.001). 수정체의 $D_{mean}$의 평균값은 P1에서 3.1 Gy, P2와 P3에서는 2.4~2.9 Gy였다(p<0.001). 결 론: 전뇌방사선치료 시 다른 복잡한 방법을 이용하지 않고, 중심점을 가쪽눈구석에 위치시키는 것만으로도 뇌와 수정체의 조사선량 측면에서 유리하였다.

Keywords

References

  1. Soffietti R, Ruda R, Trevisan E. Brain metastases: current management and new developments. Curr Opin Oncol 2008; 20:676-684 https://doi.org/10.1097/CCO.0b013e32831186fe
  2. Patel S, Macdonald OK, Suntharalingam M. Evaluation of the use of prophylactic cranial irradiation in small cell lung cancer. Cancer 2009;115:842-850 https://doi.org/10.1002/cncr.24105
  3. Kim IH, Choi DH, Kim JH, Ha SW, Park CI, Ahn HS. Effect of prophylactic cranial irradiation in acute lymphoblastic leukemia in children. J Korean Soc Ther Radiol 1989;7:269-278
  4. Shinn KS, Kang KM, Kim HK, Choi IB, Kim IA. Prophylactic cranial irradiation for acute lymphoblastic leukemia in childhood. J Korean Soc Ther Radiol 1996;14:137-148
  5. Meert AP, Paesmans M, Berghmans T, et al. Prophylactic cranial irradiation in small cell lung cancer: a systematic review of the literature with meta-analysis. BMC Cancer 2001;1:5 https://doi.org/10.1186/1471-2407-1-5
  6. Kalapurakal JA, Sathiaseelan V, Bista T, Marymont MH. Adverse impact of multileaf collimator field shaping on lens dose in children with acute leukemia receiving cranial irradiation. Int J Radiat Oncol Biol Phys 2000;48:1227-1231 https://doi.org/10.1016/S0360-3016(00)00723-9
  7. Cheng CW, Das IJ, Steinberg T. Role of multileaf collimator in replacing shielding blocks in radiation therapy. Int J Cancer 2001;96:385-395 https://doi.org/10.1002/ijc.1038
  8. De Meerleer GO, Derie CM, Vakaet L, Fortan LG, Mersseman BK Jr, De Neve WJ. Execution of a singleisocenter three-field technique, using a multileaf collimator or tray-mounted cerrobend blocks: effect on treatment time. Int J Radiat Oncol Biol Phys 1997;39:255-259
  9. Dirican B, Beyzadeoglu M, Turgay HT, Pak Y. Comparison of multileaf collimation and shield alloy blocks on an irregular target volume. Radiat Med 1996;14:293-296
  10. LoSasso T, Kutcher GJ. Multileaf collimation versus alloy blocks: analysis of geometric accuracy. Int J Radiat Oncol Biol Phys 1995;32:499-506 https://doi.org/10.1016/0360-3016(94)00455-T
  11. Cheng CW, Wong JR, Ndlovu AM, Das IJ, Schiff P, Uematsu M. Dosimetric evaluation and clinical application of virtual mini-multileaf collimator. Am J Clin Oncol 2003;26:e37- 44
  12. Gillin MT, Kline RW, Kun LE. Cranial dose distribution. Int J Radiat Oncol Biol Phys 1979;5:1903-1906 https://doi.org/10.1016/0360-3016(79)90581-9
  13. Yu JB, Shiao SL, Knisely JP. A dosimetric evaluation of conventional helmet field irradiation versus two-field intensitymodulated radiotherapy technique. Int J Radiat Oncol Biol Phys 2007;68:621-631 https://doi.org/10.1016/j.ijrobp.2006.12.004
  14. Keall P, Arief I, Shamas S, Weiss E, Castle S. The development and investigation of a prototype three-dimensional compensator for whole brain radiation therapy. Phys Med Biol 2008;53:2267-2276 https://doi.org/10.1088/0031-9155/53/9/004
  15. Goyal S, Yue NJ, Millevoi R, Kagan E, Haffty B, Narra V. Improvement in dose homogeneity with electronic tissue compensation over IMRT and conventional RT in whole brain radiotherapy. Radiother Oncol 2008;88:196-201 https://doi.org/10.1016/j.radonc.2008.03.001
  16. DeAngelis LM, Delattre JY, Posner JB. Radiationinduced dementia in patients cured of brain metastases. Neurology 1989;39:789-796 https://doi.org/10.1212/WNL.39.6.789
  17. Schipper J, Tan KE, van Peperzeel HA. Treatment of retinoblastoma by precision megavoltage radiation therapy. Radiother Oncol 1985;3:117-132 https://doi.org/10.1016/S0167-8140(85)80016-5
  18. Merriam GR Jr, Focht EF. A clinical study of radiation cataracts and the relationship to dose. Am J Roentgenol Radium Ther Nucl Med 1957;77:759-785
  19. Woo SY, Donaldson SS, Heck RJ, Nielson KL, Shostak C. Minimizing and measuring lens dose when giving cranial irradiation. Radiother Oncol 1989;16:183-188 https://doi.org/10.1016/0167-8140(89)90018-2
  20. Christ G, Denninger D, Dohm OS, Weigel B, Hones A, Paulsen F. Craniospinal radiotherapy in an advanced technique. Strahlenther Onkol 2008;184:530-535 https://doi.org/10.1007/s00066-008-1843-1
  21. South M, Chiu JK, Teh BS, Bloch C, Schroeder TM, Paulino AC. Supine craniospinal irradiation using intrafractional junction shifts and field-in-field dose shaping: early experience at Methodist Hospital. Int J Radiat Oncol Biol Phys 2008;71: 477-483 https://doi.org/10.1016/j.ijrobp.2007.10.029

Cited by

  1. 전뇌조사의 체적변조회전치료 시 두피선량 감소에 관한 평가 vol.15, pp.10, 2014, https://doi.org/10.5762/kais.2014.15.10.6187
  2. Linac 기반 VMAT 정위적 수술 뇌 병변 연구와 기존의 정위적 방사선 수술 비교 vol.15, pp.2, 2010, https://doi.org/10.7742/jksr.2021.15.2.239