DOI QR코드

DOI QR Code

Berberine Inhibited Radioresistant Effects and Enhanced Anti-Tumor Effects in the Irradiated-Human Prostate Cancer Cells

  • Hur, Jung-Mu (Chong Kun Dang Healthcare Crop. Research Center) ;
  • Kim, Dong-Ho (Radiation Research Center for Bio-Technology, Korea Atomic Energy Research Institute)
  • Received : 2010.04.21
  • Accepted : 2010.05.15
  • Published : 2010.06.01

Abstract

The purpose of this study was to elucidate the mechanism underlying enhanced radiosensitivity to $^{60}Co\;{\gamma}$-irradiation in human prostate PC-3 cells pretreated with berberine. The cytotoxic effect of the combination of berberine and irradiation was superior to that of berberine or irradiation alone. Cell death and Apoptosis increased significantly with the combination of berberine and irradiation. Additionally, ROS generation was elevated by berberine with or without irradiation. The antioxidant NAC inhibited berberine and radiation-induced cell death. Bax, caspase-3, p53, p38, and JNK activation increased, but activation of Bcl-2, ERK, and HO-1 decreased with berberine treatment with or without irradiation. Berberine inhibited the anti-apoptotic signal pathway involving the activation of the HO-1/NF-${\kappa}B$-mediated survival pathway, which prevents radiation-induced cell death. Our data demonstrate that berberine inhibited the radioresistant effects and enhanced the radiosensitivity effects in human prostate cancer cells via the MAPK/caspase-3 and ROS pathways.

Keywords

References

  1. Baldwin, A.S. (1996). The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu. Rev. Immunol., 14, 649-683. https://doi.org/10.1146/annurev.immunol.14.1.649
  2. Bergman, P.J. and Harris, D. (1997). Radioresistance, chemoresistance, and apoptosis resistance. The past, present, and future. Vet. Clin. N. Am-Small., 27, 47-57. https://doi.org/10.1016/S0195-5616(97)50005-2
  3. Blumenstein, M., Hossfeld, D.K. and Duhrsen, U. (1998). Indirect radiation leukemogenesis in DBA/2 mice: increased expression of B2 repeats in FDC-P1 cells transformed by intracisternal Aparticle transposition. Ann. Hematol., 76, 53-60. https://doi.org/10.1007/s002770050363
  4. Bohnke, A., Westphal, F., Schmidt, A., El-Awady, R.A. and Dahm-Daphi, J. (2004). Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int. J. Radiat. Biol., 80, 53-63. https://doi.org/10.1080/09553000310001642902
  5. Bohnke, A., Westphal, F., Schmidt, A., El-Awady, R.A. and Dahm-Daphi, J. (2004). Role of p53 mutations, protein function and DNA damage for the radiosensitivity of human tumor cells. Int. J. Radiat. Biol., 80, 53-63. https://doi.org/10.1080/09553000310001642902
  6. Bristow, R., Benchimol, S. and Hill, R. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother. Oncol., 40, 197-223. https://doi.org/10.1016/0167-8140(96)01806-3
  7. Bristow, R., Benchimol, S. and Hill, R. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother. Oncol., 40, 197-223. https://doi.org/10.1016/0167-8140(96)01806-3
  8. Carson, C.C. (2006). Carcinoma of the prostate: overview of the most common malignancy in men. N. C. Med. J., 67, 122-126.
  9. Colombo, R., Naspro, R., Salonia, A., Montorsi, F., Raber, M., Suardi, N., Sacca, A. and Rigatti, P. (2006). Radical prostatectomy after previous prostate surgery: clinical and functional outcomes. J. Urol., 176, 2459-2463. https://doi.org/10.1016/j.juro.2006.07.140
  10. Corbiere, C., Liagre, B., Terro, F. and Beneytout, J.L. (2004). Induction of antiproliferative effect by diosgenin through activation of p53, release of apoptosis-inducing factor (AIF) and modulation of caspase-3 activity in different human cancer cells. Cell Res., 14, 188-196. https://doi.org/10.1038/sj.cr.7290219
  11. Greenlee, R.T., Murray, T., Bolden, S. and Wingo, P.A. (2000). Cancer statistics. Cancer J. Clinic., 50, 7-33. https://doi.org/10.3322/canjclin.50.1.7
  12. He, Z.W., Zhao, X.Y., Xu, R.Z. and Wu, D. (2006). Effects of berbamine on growth of leukemia cell line NB4 and its mechanism. Zhejiang Da. Xue. Xue. Bao. Yi. Xue. Ban., 35, 209-214.
  13. Hwang, J.M., Kuo, H.C., Tseng, T.H. and Liu, Y.J. (2006). Berberine induces apoptosis through a mitochondria/caspase pathway in human hepatoma cells. Arch. Toxicol., 2, 62-73.
  14. Kaminski, J.M., Hanlon, A.L., Joon, D.L., Meistrich, M., Hachem, P. and Pollack, A. (2003). Effect of sequencing of androgen deprivation and radiotherapy on prostate cancer growth. Int. J. Radiat. Oncol. Biol. Phys., 57, 24-28.
  15. Keyse, S.M. and Tyrrell, R.M. (1989). Heme oxygenase is the major 32-kDastress protein induced in human skin fibroblasts by UVA radiation, hydrogen peroxide, and sodium arsenite. Proc. Natl. Acad. Sci. USA, 86, 99-103. https://doi.org/10.1073/pnas.86.1.99
  16. Kucharczak, J., Simmons, M.J., Fan, Y. and Gelinas, C. (2003). To be, or not to be: NF-kappaB is the answer role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene., 22, 8961-8982. https://doi.org/10.1038/sj.onc.1207230
  17. Kuo, C.L., Chi, C.W. and Liu, T.Y. (2004). The anti-inflammatory potential of berberine in vitro and in vivo. Cancer Lett., 203, 127-137. https://doi.org/10.1016/j.canlet.2003.09.002
  18. Kuo, C.L., Chi, C.W. and Liu, T.Y. (2005). Modulation of apoptosis by berberine through inhibition of cyclooxygenase-2 and Mcl-1 expression in oral cancer cells. In Vivo., 19, 247-252.
  19. Lau, C.W., Yao, X.Q., Chen, Z.Y., Ko, W.H. and Huang, Y. (2001). Cardiovascular actions of berberine. Cardiovasc. Drug Rev., 3, 234-244.
  20. Rosser, C.J., Reyes, A.O., Vakar-Lopez, F., Levy, L.B., Kuban, D.A., Hoover, D.C., Lee, A.K. and Pisters, L.L. (2003). Bcl-2 is significantly overexpressed in localized radio-recurrent prostate carcinoma, compared with localized radio-naive prostate carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 56, 1-6.
  21. Rosser, C.J., Tanaka, M., Pisters, L.L., Tanaka, N., Levy, L.B., Hoover, D.C., Grossman, H.B., McDonnell, T.J., Kuban, D.A. and Meyn, R.E. (2004). Adenoviral-mediated PTEN transgene expression sensitizes Bcl-2-expressing prostate cancer cells to radiation. Cancer Gene Ther., 11, 273-279. https://doi.org/10.1038/sj.cgt.7700673
  22. Szotowski, B., Antoniak, S., Goldin-Lang, P., Tran, Q.V., Pels, K., Rosenthal, P., Bogdanov, V.Y., Borchert, H.H., Schultheiss, H.P. and Rauch, U. (2007). Antioxidative treatment inhibits the release of thrombogenic tissue factor from irradiation- and cytokine-induced endothelial cells. Cardiovasc. Res., 73, 806-812. https://doi.org/10.1016/j.cardiores.2006.12.018
  23. Vink, S.R., Schellens, J.H., Beijnen, J.H., Sindermann, H., Engel, J., Dubbelman, R., Moppi, G., Hillebrand, M.J., Bartelink, H. and Verheij, M. (2006). Phase I and pharmacokinetic study of combined treatment with perifosine and radiation in patients with advanced solid tumours. Radiother. Oncol., 80, 207-213. https://doi.org/10.1016/j.radonc.2006.07.032
  24. Wada, T. and Penninger, J.M. (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene., 23, 2838-2849. https://doi.org/10.1038/sj.onc.1207556
  25. Wang, H.G. and Reed, J.C. (1998). Bc1-2, Raf-1 and mitochondrial regulation of apoptosis. Biofactors., 8, 13-16. https://doi.org/10.1002/biof.5520080103
  26. Wilson, R.E., Taylor, S.L., Atherton, G.T., Johnston, D., Waters, C.M. and Norton, J.D. (1993). Early response gene signaling cascades activated by ionizing radiation in primary human B cells. Oncogene., 8, 3229-3237.
  27. Xia, Z., Dickens, M., Raingeaud, J., Davis, R.J. and Greenberg, M.E. (1995). Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 270, 1326-1331. https://doi.org/10.1126/science.270.5240.1326
  28. Zhang, Y. and Chen, F. (2004). Reactive oxygen species (ROS), troublemakers between nuclear factor-kappaB (NF-kappaB) and c-Jun NH(2)-terminal kinase (JNK). Cancer Res., 64, 1902-1905. https://doi.org/10.1158/0008-5472.CAN-03-3361

Cited by

  1. Berberine inhibits the proliferation of prostate cancer cells and induces G0/G1 or G2/M phase arrest at different concentrations vol.11, pp.5, 2014, https://doi.org/10.3892/mmr.2014.3139
  2. Apoptotic Effect of ARTEMISIAE CAPILLARIS HERBA and COPTIDIS RHIZOMA Extracts on MIA PaCa-2 Cells vol.27, pp.4, 2014, https://doi.org/10.6114/jkood.2014.27.4.158
  3. Berberine Inhibits Invasion and Metastasis of Colorectal Cancer Cells via COX-2/PGE2 Mediated JAK2/STAT3 Signaling Pathway vol.10, pp.5, 2015, https://doi.org/10.1371/journal.pone.0123478
  4. Berberine Ameliorates Intestinal Mucosal Barrier Damage Induced by Peritoneal Air Exposure vol.38, pp.1, 2015, https://doi.org/10.1248/bpb.b14-00643
  5. Involvement of P-glycoprotein and multidrug and toxin extrusion protein 1 in hepatic and renal berberine efflux in mice vol.7, pp.55, 2017, https://doi.org/10.1039/C7RA01643C
  6. Drug loaded poly(glycerol sebacate) as a local drug delivery system for the treatment of periodontal disease vol.7, pp.59, 2017, https://doi.org/10.1039/C7RA02796F
  7. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation vol.13, pp.1, 2018, https://doi.org/10.1371/journal.pone.0190516
  8. Berberine Improves Benign Prostatic Hyperplasia via Suppression of 5 Alpha Reductase and Extracellular Signal-Regulated Kinase in Vivo and in Vitro vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00773