On the Ergodic Capacity of STBCs from GCIODs over Nakagami-m Fading Channels

Nakagami-m 페이딩 채널에서 GCIODs로 얻은 STBCs의 에르고딕 용량에 대한 연구

  • Lee, Hoo-Jin (Department of Information and Communications Engineering, Hansung University) ;
  • Chung, Young-Mo (Department of Information and Communications Engineering, Hansung University)
  • Received : 2010.01.07
  • Accepted : 2010.04.21
  • Published : 2010.05.31

Abstract

In this paper, we derive exact closed-form formulas, in terms of Meijer's G-function, for the ergodic capacity of space-time block codes (STBCs) from generalized linear complex orthogonal designs (GLCODs) and generalized coordinate interleaved orthogonal designs (GCIODs) in quasi-static frequency-nonselective i.i.d. Nakagami-m fading channels. The derived analytical results show an excellent agreement with Monte-Carlo simulation results. Thus, a useful means for analyzing and predicting the ergodic capacity performance of STBCs from GLCODs or GCIODs can be provided in various antenna configurations and different channel conditions without extensive Monte-Carlo simulations. We present some numerical results to verify the accuracy of the derived formulas.

본 논문에서는 주파수 비선택성이고 준정적인 동일 분포 독립 Nakagami-m 페이딩 채널에서 GLCODs(Generalized Linear Complex Orthogonal Designs)와 GCIODs(Generalized Coordinate Interleaved Orthogonal Designs)로 얻은 STBCs(Space-Time Block Codes)의 에르고딕 용량을 Meijer의 G함수로 표현되는 닫힌꼴로 유도한다. 유도된 해석적 결과는 Monte-Carlo 모의실험 결과와 매우 잘 일치함을 보였다. 그러므로 대규모 Monte-Carlo 모의실험 없이 다양한 안테나 구성과 상이한 채널환경에서 GLCODs와 GCIODs로 얻은 STBCs의 에르고딕 용량 성능을 분석하고 예측하는 유용한 기법이 제안되었다고 할 수 있다. 마지막에는 유도된 식의 정확도를 입증하는 수치적인 결과들을 제시한다.

Keywords

References

  1. S. M. Alamouti, "A simple transmit diversity technique for wireless communications," IEEE J. Select. Areas Commun., Vol.16, No.8, pp.1451-1458, Oct., 1998. https://doi.org/10.1109/49.730453
  2. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block code from orthogonal designs," IEEE Trans. Inform. Theory, Vol.45, No.5, pp.1456-1467, July, 1999. https://doi.org/10.1109/18.771146
  3. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, "Space-time block coding for wireless communications: Performance results," IEEE J. Select. Areas Commun., Vol.17, No.3, pp.451-460, Mar., 1999. https://doi.org/10.1109/49.753730
  4. G. Ganesan and P. Stoica, "Space-time block codes: A maximum SNR approach," IEEE Trans. Inform. Theory, Vol.47, No.4, pp.1650-1656, May, 2001. https://doi.org/10.1109/18.923754
  5. M. Z. A. Khan and B. S. Rajan, "Single-symbol maximum likelihood decodable linear STBCs," IEEE Trans. Inform. Theory, Vol.52, No.5, pp.2062-2091, May, 2006. https://doi.org/10.1109/TIT.2006.872970
  6. C. Yuen, Y. L. Guan, and T. T. Tjhung, "Quasi-orthogonal STBC with minimum decoding complexity," IEEE Trans. Wireless Commun., Vol.4, No.5, pp.2089-2094, Sept., 2005.
  7. A. Maaref and S. Aissa, "Performance analysis of orthogonal space-time block codes in spatially correlated MIMO Nakagami fading channels," IEEE Trans. Wireless Commun., Vol.5, No.4, pp.807-817, Apr., 2006. https://doi.org/10.1109/TWC.2006.1618930
  8. H. Zhang and T. A. Gulliver, "Capacity and error probability analysis for orthogonal space-time block codes over fading channels," IEEE Trans. Wireless Commun., Vol.42, No.2, pp.808-819, Mar., 2005.
  9. L. Musavian, M. Dohler, M. R. Nakhai, and A. H. Aghvami, "Closed-form capacity expression of orthogonalized correlated MIMO channels," IEEE Commun. Lett., Vol.8, No.6, pp.365-367, June, 2004. https://doi.org/10.1109/LCOMM.2004.827430
  10. D. N. Dao and C. Tellambura, "On space-time block codes from coordinate interleaved orthogonal designs," in Proc. IEEE MILCOM 2006, Washington, D.C., Oct., 2006, pp.1-5.
  11. H. Lee, J. G. Andrews, and E. J. Powers, "Information outage probability and diversity order of symmetric coordinate interleaved orthogonal designs," IEEE Trans. Wireless Commun., Vol.7, No.5, pp.1501-1506, May, 2008. https://doi.org/10.1109/TWC.2008.061057
  12. H. Lee, J. G. Andrews, R. W. Heath, Jr., and E. J. Powers, "The performance of space-time block codes from coordinate interleaved orthogonal designs over Nakagami-m fading channels," IEEE Trans. Commun., Vol.57, No.3, pp.653-664, Mar., 2009. https://doi.org/10.1109/TCOMM.2009.03.060716
  13. H. Lee, "Wireless Systems Incorporating Full-Diversity Single-Symbol Decodable Space-Time Block Codes: Performance Evaluations and Developments," Ph.D. dissertation, The University of Texas at Austin, TX, USA, 2007.
  14. M. K. Simon and M.-S. Alouini, Digital Communication Over Fading Channels. New York, NY: Wiley, 2002.
  15. N. C. Sagias, G. S. Tombas, and G. K. Karagiannidis, "New results for the Shannon channel capacity in generalized fading channels," IEEE Commun. Lett., Vol.9, No.2, pp.97-99, Feb., 2005. https://doi.org/10.1109/LCOMM.2005.02031
  16. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic, 1994.
  17. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.
  18. D. N. Dao and C. Tellambura, "On decoding, mutual information, and antenna selection diversity for quasi-orthogonal STBC with minimum decoding complexity," in Proc. IEEE GLOBECOM 2006, San Francisco, CA, Nov., 2006, pp.1-5.
  19. Wolfram, The Wolfram functions site, "Meijer G-function, specialized values, case {m,n,p,q}={1,0,0,1}," 2007. [Online]. Available: http://functions.wolfram.com/07.34.03.0228.01/
  20. Wolfram, The Wolfram functions site, "Meijer G-function, specialized values, case {m,n,p,q}={1,2,2,2}," 2007. [Online]. Available: http://functions.wolfram.com/07.34.03.0456.01/
  21. Wolfram, The Wolfram functions site, "Meijer G-function, classical Meijer's integral from two G-functions" 2007. [Online]. Available: http://functions.wolfram.com/07.34.21.0011.01/