Study on Planar Orientation and Selective Reflection of Cholesteric Liquid Crystals

콜레스테릭 액정의 Planar 배열과 선택 반사 특성에 관한 연구

  • Jung, Gap-Ha (Materials Research Center for Information Display, Kyung Hee University) ;
  • Seo, In-Seon (Materials Research Center for Information Display, Kyung Hee University) ;
  • Lee, Mong-Ryong (Materials Research Center for Information Display, Kyung Hee University) ;
  • Choi, Suk-Won (Materials Research Center for Information Display, Kyung Hee University) ;
  • Song, Ki-Gook (Materials Research Center for Information Display, Kyung Hee University)
  • 정갑하 (경희대학교 영상정보소재기술연구센터) ;
  • 서인선 (경희대학교 영상정보소재기술연구센터) ;
  • 이몽룡 (경희대학교 영상정보소재기술연구센터) ;
  • 최석원 (경희대학교 영상정보소재기술연구센터) ;
  • 송기국 (경희대학교 영상정보소재기술연구센터)
  • Received : 2009.12.30
  • Accepted : 2010.03.12
  • Published : 2010.05.25

Abstract

FTIR spectroscopy has been employed in order to quantitatively investigate the relationship between planar arrangements and selective reflectance of cholesteric liquid crystals. It was found that the selective reflection was enhanced as the amount of planar arrangements in cholesteric liquid crystals increased. Although the planar arrangements of cholesteric liquid crystals can be induced only by the shear force effect, it was more effective to use the alignment layer to obtain the perfect planar arrangements.

선택 반사를 보이는 콜레스테릭 액정의 planar 배열과 선택적 반사 효율과의 연관성에 대하여 FTIR spectroscopy를 이용하여 정량적으로 조사하였다. Cholesteric liquid crystal(CLC) 내 planar 배열이 잘 유도될수록 선택 반사율이 높아짐을 알 수 있었고, 배향막을 사용하지 않고 shear force 효과에 의해서만 planar 배열을 유도할 수 있었지만 완전한 planar 배열을 유도하기 위해서는 배향막을 사용하는 것이 효과적이었다.

Keywords

References

  1. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals. 2nd ed., Oxford Clarendon Press, Oxford, 1993.
  2. N. Boiko and V. Shibaev, Inter. J. Polym. Mater., 45, 533 (2000). https://doi.org/10.1080/00914030008035053
  3. M. Schadt and P. Gerber, Mol. Cryst. Liq. Cryst., 65, 241 (1981) . https://doi.org/10.1080/00268948108082137
  4. D. Dunmur and K. Toriyama, Physical Properties of Liquid Crystals, Wiley-VCH, Weinheim, 1999.
  5. B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, Appl. Phys. Lett., 92, 061101 (2008). https://doi.org/10.1063/1.2838299
  6. D. J. Broer, G. N. Mol, and J. A. M. M. van Haaren, J. Adv. Mater., 11, 573 (1999). https://doi.org/10.1002/(SICI)1521-4095(199905)11:7<573::AID-ADMA573>3.0.CO;2-E
  7. Y. J. Kwon, W. J. Lee, S. J. Paek, I. Kim, and K. Song, Mol. Cryst. Liq. Cryst., 377, 325 (2002). https://doi.org/10.1080/10587250211665
  8. Y. Kwon, W. Lee, B. Kim, I. Kim, and K. Song, Polymer(Korea), 30, 422 (2006).
  9. D. C. Zografopoulos, E. E. Kriezis, M. Mitov, and C. Binet, Phys. Rev. E, 73, 061701 (2006). https://doi.org/10.1103/PhysRevE.73.061701
  10. M. Lee, J. Jang, S.-W. Choi, and K. Song, Bull. Korean Chem. Soc., 30, 1625 (2009). https://doi.org/10.5012/bkcs.2009.30.7.1625
  11. J. Park, B. Kim, W. Kim, I. Kim, and K. Song, Polymer(Korea), 30, 182 (2006).
  12. N. Leroux, W. J. Fritz, J. W. Doane, and L.-C. Chien, Mol. Cryst. Liq. Sci. Technol., Sect. A, 261, 465 (1995). https://doi.org/10.1080/10587259508033490
  13. H. Guillard and P. Sixou, Liq. Cryst., 28, 933 (2001). https://doi.org/10.1080/02678290010028753
  14. M. Mitov, E. Nouvet, and N. Dessaud, Eur. Phys., 90, 1730 (2001).
  15. D. J. Broer, J. Lub, and G. N. Mol, Nature, 378, 467 (1995). https://doi.org/10.1038/378467a0
  16. R. A. M. Hikmet and H. Kemperman, Nature, 392, 476 (1998). https://doi.org/10.1038/33110
  17. C. Binet, M. Mitov, and A. Boudet, Mol. Cryst. Liq. Cryst., 399, 111 (2000).
  18. T. J. Bunning and P. T. Mather, Liq. Cryst., 26, 557 (1999). https://doi.org/10.1080/026782999205001
  19. M. Mitov, A. Boudet, and P. Sopena, Eur. Phys. J. B, 8, 327 (1999) . https://doi.org/10.1007/s100510050696
  20. P. J. Shanno, Macromol., 17, 1873 (1984). https://doi.org/10.1021/ma00139a043
  21. K. Ha, H.-J. Ahn, and C. Son, Liq. Cryst., 33, 8, 935 (2006). https://doi.org/10.1080/02678290600871440
  22. R. Bhargava, B. G. Wall, and J. L. Koenig, Appl. Spect., 54, 4 (2000).
  23. A. Hatta, Mol. Cryst. Liq. Cryst., 72, 195 (1981).
  24. A. Kazunori, I. Atsuko, and K. Shunsuke, Jpn. J. Appl. Phys., 37, 6482, Part1, 12A (1998). https://doi.org/10.1143/JJAP.37.6482
  25. L. M. Lee, H. J. Kwon, J. H. Kang, R. G. Nuzzo, and K. S. Schweizer, J. Chem. Phys., 125, 024705 (2006). https://doi.org/10.1063/1.2210930
  26. A. R. Noble-Luginbuhl, R. M. Blanchard, and R. G. Nuzzo, J. Am. Chem. Soc., 122, 3917 (2000). https://doi.org/10.1021/ja9939690
  27. J. Guo, L. Yu, F. Liu, R. Guo, G. Ma, H. Cao, and H. Yang, J. Polym. Sci., 46, 1562 (2008). https://doi.org/10.1002/polb.21492
  28. L. M. Lee, H. J. Kwon, R. G. Nuzzo, and K. S. Schweizer, J. Phys. Chem. B, 110, 15782 (2006). https://doi.org/10.1021/jp056047u