Chemical Resistance of Polycarbonate/Poly(butylene terephthalate) Blends

폴리카보네이트/폴리(부틸렌 테레프탈레이트) 블렌드의 내화학성

  • Lyu, Min-Young (Department of Product Design and Manufacturing Engineering, Seoul National University of Technology) ;
  • Choi, Dae-Hwan (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Young-Hee (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Nah, Chang-Woon (Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • 류민영 (서울산업대학교 제품설계금형공학과) ;
  • 최대환 (전북대학교 고분자.나노공학과) ;
  • 김영희 (전북대학교 고분자.나노공학과) ;
  • 나창운 (전북대학교 고분자.나노공학과)
  • Received : 2009.12.21
  • Accepted : 2010.02.12
  • Published : 2010.05.25

Abstract

Mechanical characteristics and chemical resistance have been investigated for PC/PBT blends. The changes in mechanical performance of PC/PBT blends was monitored during the treatment with both the PC thinner and general-purpose thinner to figure out the chemical resistance. The PC thinner greatly affected the mechanical properties of PC/PBT blends compared with general-purpose thinner. In the case of PC thinner treatment, the mechanical performance was improved with increased PC content at lower PC content ranges, say below 50%. However the mechanical performance was dropped rapidly at higher PC content ranges due to poor chemical resistance of PC. Transparent pure PC specimen became opaque after chemical treatment with PC thinner, and this can be interpreted by solvent-induced crystallization.

본 연구는 폴리카보네이트/폴리(부틸렌 테레프탈레이트)(PC/PBT) 블렌드의 기계적 특성과 내화학성을 조사하였다. 내 화학성 실험을 위해 일반 신너(thinner)와 PC용 신너를 PC/PBT 블렌드에 처리한 후 물리적 특성 변화를 관찰하였다. PC용 신너의 경우 PC/PBT 블렌드의 기계적 물성에 지대한 영향을 미친 반면, 일반 신너의 경우 상대적으로 영향이 미미하였다. PC용 신너를 처리한 경우 PC 함량이 낮은 범위에서는 PC 함량 증가에 따라 인장강도가 증가하나 PC 함량이 높은 범위에서는 PC의 낮은 화학저항성에 기인하여 기계적 물성의 하락이 크게 나타났다. 순수한 PC의경우 PC 신너에 의해 불투명해지고 이는 용매유도 결정화에 기인된 것으로 해석되었다.

Keywords

References

  1. H. N. Novak, L. R. Crittenden, and P. A. Woods, Med. Plast. Biomater., 3, 12 (1996).
  2. A. N. Wilkinson, S. B. Tattum, and A. J. Ryan, Polymer, 38, 1923 (1997). https://doi.org/10.1016/S0032-3861(96)00712-4
  3. G. Montaudo, C. Puglisi, and F. Samperi, Macromolecules, 31, 650 (1998). https://doi.org/10.1021/ma9712054
  4. G. Pompe and L. Hausler, J. Polym. Sci. Part B: Polym. Phys., 35, 2161 (1997). https://doi.org/10.1002/(SICI)1099-0488(19970930)35:13<2161::AID-POLB16>3.0.CO;2-2
  5. I. Hopfe, G. Pompe, and K.-J. Eichhorn, Polymer, 38, 2321 (1997). https://doi.org/10.1016/S0032-3861(96)00800-2
  6. P. Sanchez, P. M. Remiro, and J. Nazaal, J. Appl. Polym. Sci., 50, 995 (1993). https://doi.org/10.1002/app.1993.070500609
  7. R. S. Halder, M. Joshi, and A. Misra, J. Appl. Polym. Sci., 39, 1251 (1990). https://doi.org/10.1002/app.1990.070390604
  8. J. D. Godard and J. P. Mercier, Polym. Eng. Sci., 22, 229 (1988).
  9. S. Y. Hobbs, M. E. J. Dekkers, and V. H. Watkins, J. Mater. Sci., 23,1219 (1988). https://doi.org/10.1007/BF01154581
  10. J. Wu, D.-M. Yu, Y.-W. Mai, and A. F. Yee, J. Mater. Sci., 35, 307 (2000). https://doi.org/10.1023/A:1004741200924
  11. M.-L. Lu and F.-C. Chang, Polymer, 36, 4639 (1995). https://doi.org/10.1016/0032-3861(95)96831-R
  12. A. Golovoy, M.-F. Cheung, K. R. Carduner, and M. J. Rokosz, Polym. Eng. Sci., 29, 1226 (1989). https://doi.org/10.1002/pen.760291803
  13. R. C. Crosby, L. I. Flowers, R. R. Odie, J. L. De Rudder, and Y. -G. Lin, EP 683 200 (1995).
  14. M.-Y. Lyu, Polymer(Korea) , 26, 237 (2002).
  15. A. W. Birley and X. Y. Chen, Brit. Polym. J., 17, 297 (1985). https://doi.org/10.1002/pi.4980170308
  16. A. Golovoy, M. F. Cheung, and H. van. Oene, Polym. Eng. Sci., 28, 200 (1988). https://doi.org/10.1002/pen.760280403
  17. H. L. Heiss, Polym. Eng. Sci., 19, 625 (1979). https://doi.org/10.1002/pen.760190906
  18. M.-Y. Lyu, Y. Pae, and C. Nah, Int. Polym. Proc., 18, 382 (2003). https://doi.org/10.3139/217.1756
  19. C. Nah, M.-Y. Huh, D.-H. Choi, J. H. Kook, I. R. Hwang, K.-U. Jeong, and C. K. Hong, Polymer(Korea) 31, 399 (2007).