DOI QR코드

DOI QR Code

Plant Defense Responses Coming To Shape

  • Kwon, Chi-An (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Dankook University)
  • 투고 : 2010.01.17
  • 심사 : 2010.03.09
  • 발행 : 2010.06.30

초록

Although still poorly understood, accumulating evidence clearly supports that plants also have a good immune system which have been developed and acquired during the evolution. The lack of specific mobile immune cells like a B or T cell in plants additionally suggests that most plant cells have capacity for defending themselves against numerous pathogens. Rapidly growing advances in understanding plant defense responses implicate that plant and animal immune responses are evolutionarily convergent although their origins are thought to be different. On the basis of recent findings, here current understanding of plant defense responses will be discussed.

키워드

참고문헌

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M. R., Chiu, W. L., Gomez-Gomez, L., Boller, T., Ausubel, F. M. and Sheen, J. 2002. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977-983. https://doi.org/10.1038/415977a
  2. Assaad, F. F., Qiu, J. L., Youngs, H., Ehrhardt, D., Zimmerli, L., Kalde, M., Wanner, G., Peck, S. C., Edwards, H., Ramonell, K., Somerville, C. R. and Thordal-Christensen, H. 2004. The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol. Biol. Cell 15:5118-5129. https://doi.org/10.1091/mbc.E04-02-0140
  3. Bednarek, P., Pislewska-Bednarek, M., Svatos, A., Schneider, B., Doubsky, J., Mansurova, M., Humphry, M., Consonni, C., Panstruga, R., Sanchez-Vallet, A., Molina, A. and Schulze-Lefert, P. 2009. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101-106. https://doi.org/10.1126/science.1163732
  4. Boller, T. and He, S. Y. 2009. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742-744. https://doi.org/10.1126/science.1171647
  5. Cao, H., Bowling, S. A., Gordon, A. S. and Dong, X. 1994. Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. Plant Cell 6: 1583-1592. https://doi.org/10.1105/tpc.6.11.1583
  6. Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
  7. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448:497-500. https://doi.org/10.1038/nature05999
  8. Clay, N. K., Adio, A. M., Denoux, C., Jander, G. and Ausubel, F. M. 2009. Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95-101. https://doi.org/10.1126/science.1164627
  9. Collins, N. C., Thordal-Christensen, H., Lipka, V., Bau, S., Kombrink, E., Qiu, J. L., Huckelhoven, R., Stein, M., Freialdenhoven, A., Somerville, S. C. and Schulze-Lefert, P. 2003. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973-977. https://doi.org/10.1038/nature02076
  10. Dallo, S. F., Kannan, T. R., Blaylock, M. W. and Baseman, J. B. 2002. Elongation factor Tu and E1 beta subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae. Mol. Microbiol. 46:1041-1051. https://doi.org/10.1046/j.1365-2958.2002.03207.x
  11. Delaney, T. P., Friedrich, L. and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92:6602-6606. https://doi.org/10.1073/pnas.92.14.6602
  12. Despres, C., DeLong, C., Glaze, S., Liu, E. and Fobert, P. R. 2000. The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors. Plant Cell 12:279-290. https://doi.org/10.1105/tpc.12.2.279
  13. Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411:843-847. https://doi.org/10.1038/35081178
  14. Durrant, W. E. and Dong, X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42:185-209. https://doi.org/10.1146/annurev.phyto.42.040803.140421
  15. Eulgem, T., Rushton, P. J., Robatzek, S. and Somssich, I. E. 2000. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 5:199-206.
  16. Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279:1132-1140. https://doi.org/10.1074/jbc.M308552200
  17. Gimenez-Ibanez, S., Hann, D. R., Ntoukakis, V., Petutschnig, E., Lipka, V. and Rathjen, J. P. 2009. AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr. Biol. 19:423-429. https://doi.org/10.1016/j.cub.2009.01.054
  18. Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5:1003-1011. https://doi.org/10.1016/S1097-2765(00)80265-8
  19. Granato, D., Bergonzelli, G. E., Pridmore, R. D., Marvin, L., Rouvet, M. and Corthesy-Theulaz, I. E. 2004. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect. Immun. 72:2160-2169. https://doi.org/10.1128/IAI.72.4.2160-2169.2004
  20. Iizasa, E., Mitsutomi, M. and Nagano, Y. 2010. Direct binding of a plant LysM receptor-like kinase, LysM RLK1/CERK1, to chitin in vitro. J. Biol. Chem. 285:2996-3004. https://doi.org/10.1074/jbc.M109.027540
  21. Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA 103:11086-11091. https://doi.org/10.1073/pnas.0508882103
  22. Kalde, M., Nuhse, T. S., Findlay, K. and Peck, S. C. 2007. The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc. Natl. Acad. Sci. USA 104:11850-11855. https://doi.org/10.1073/pnas.0701083104
  23. Kinkema, M., Fan, W. and Dong, X. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339-2350. https://doi.org/10.1105/tpc.12.12.2339
  24. Kunze, G., Zipfel, C., Robatzek, S., Niehaus, K., Boller, T. and Felix, G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496-3507. https://doi.org/10.1105/tpc.104.026765
  25. Kwon, C., Bednarek, P. and Schulze-Lefert, P. 2008a. Secretory pathways in plant immune responses. Plant Physiol. 147: 1575-1583. https://doi.org/10.1104/pp.108.121566
  26. Kwon, C., Neu, C., Pajonk, S., Yun, H. S., Lipka, U., Humphry, M., Bau, S., Straus, M., Kwaaitaal, M., Rampelt, H., El Kasmi, F., Jurgens, G., Parker, J., Panstruga, R., Lipka, V. and Schulze-Lefert, P. 2008b. Co-option of a default secretory pathway for plant immune responses. Nature 451:835-840. https://doi.org/10.1038/nature06545
  27. Kwon, C., Panstruga, R. and Schulze-Lefert, P. 2008c. Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol. 29:159-166. https://doi.org/10.1016/j.it.2008.01.004
  28. Li, J., Wen, J., Lease, K. A., Doke, J. T., Tax, F. E. and Walker, J. C. 2002. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213-222. https://doi.org/10.1016/S0092-8674(02)00812-7
  29. Limpens, E., Franken, C., Smit, P., Willemse, J., Bisseling, T. and Geurts, R. 2003. LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302:630-633. https://doi.org/10.1126/science.1090074
  30. Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., Landtag, J., Brandt, W., Rosahl, S., Scheel, D., Llorente, F., Molina, A., Parker, J., Somerville, S. and Schulze-Lefert, P. 2005. Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180-1183. https://doi.org/10.1126/science.1119409
  31. Madsen, E. B., Madsen, L. H., Radutoiu, S., Olbryt, M., Rakwalska, M., Szczyglowski, K., Sato, S., Kaneko, T., Tabata, S., Sandal, N. and Stougaard, J. 2003. A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637-640. https://doi.org/10.1038/nature02045
  32. Melotto, M., Underwood, W., Koczan, J., Nomura, K. and He, S. Y. 2006. Plant stomata function in innate immunity against bacterial invasion. Cell 126:969-980. https://doi.org/10.1016/j.cell.2006.06.054
  33. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104:19613-19618. https://doi.org/10.1073/pnas.0705147104
  34. Mou, Z., Fan, W. and Dong, X. 2003. Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944. https://doi.org/10.1016/S0092-8674(03)00429-X
  35. Nam, K. H. and Li, J. 2002. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203-212. https://doi.org/10.1016/S0092-8674(02)00814-0
  36. Radutoiu, S., Madsen, L. H., Madsen, E. B., Felle, H. H., Umehara, Y., Gronlund, M., Sato, S., Nakamura, Y., Tabata, S., Sandal, N. and Stougaard, J. 2003. Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585-592. https://doi.org/10.1038/nature02039
  37. Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, H. Y., Johnson, J., Delaney, T. P., Jesse, T., Vos, P. and Uknes, S. 1997. The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B. Plant Cell 9:425-439. https://doi.org/10.1105/tpc.9.3.425
  38. Stein, M., Dittgen, J., Sanchez-Rodriguez, C., Hou, B. H., Molina, A., Schulze-Lefert, P., Lipka, V. and Somerville, S. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731-746.
  39. Tada, Y., Spoel, S. H., Pajerowska-Mukhtar, K., Mou, Z., Song, J., Wang, C., Zuo, J. and Dong, X. 2008. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science 321:952-956. https://doi.org/10.1126/science.1156970
  40. Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94:1029-1034. https://doi.org/10.1073/pnas.94.3.1029
  41. van Loon, L. C., Rep, M. and Pieterse, C. M. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162. https://doi.org/10.1146/annurev.phyto.44.070505.143425
  42. Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471-481. https://doi.org/10.1105/tpc.107.056754
  43. Xu, X., Chen, C., Fan, B. and Chen, Z. 2006. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 18:1310-1326. https://doi.org/10.1105/tpc.105.037523
  44. Zhang, Y., Fan, W., Kinkema, M., Li, X. and Dong, X. 1999. Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc. Natl. Acad. Sci. USA 96: 6523-6528. https://doi.org/10.1073/pnas.96.11.6523
  45. Zhang, Y., Tessaro, M. J., Lassner, M. and Li, X. 2003. Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647-2653. https://doi.org/10.1105/tpc.014894
  46. Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749-760. https://doi.org/10.1016/j.cell.2006.03.037
  47. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D., Felix, G. and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. https://doi.org/10.1038/nature02485

피인용 문헌

  1. Molecular communications between plant heat shock responses and disease resistance vol.34, pp.2, 2012, https://doi.org/10.1007/s10059-012-0121-3
  2. Plant Exocytic Secretion of Toxic Compounds for Defense vol.30, pp.2, 2014, https://doi.org/10.5487/TR.2014.30.2.077
  3. Calcium potentiates post-invasive resistance to Golovinomyces orontii fungus in Arabidopsis vol.37, pp.6, 2015, https://doi.org/10.1007/s13258-015-0283-4