참고문헌
- Thony, B., Auerbach, G. and Blau, N. (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem. J. 347, 1-16. https://doi.org/10.1042/0264-6021:3470001
- Kim, H. L., Choi, Y. K., Kim, D. H., Park, S. O., Han, J. and Park, Y. S. (2007) Tetrahydropteridine deficiency impairs mitochondrial function in Dictyostelium discoideum Ax2. FEBS Letters 581, 5430-5434. https://doi.org/10.1016/j.febslet.2007.10.044
-
Cha, E. Y., Park, J. S., Jeon, S., Kong, J. S., Choi, Y. K., Ryu, J. Y., Park, Y. I. and Park, Y. S. (2005) Functional Characterization of the gene encoding UDP-glucose: tetrahydrobiopterin
${\alpha}$ -glucosyltransferase in Synechococcus sp. PCC 7942. J. Microbiol. 43, 191-195. - Longo, N. (2009) Disorders of biopterin metabolism. J. Inherit. Metab. Dis. 32, 333-342. https://doi.org/10.1007/s10545-009-1067-2
- Tegeder, I., Costigan, M., Griffin, R. S., Abele, A., Belfer, I., Schmidt, H., Ehnert, C., Nejim, J., Marian, C., Scholz, J., Wu, T., Allchorne, A., Diatchenko, L., Binshtok, A. M., Goldman, D., Adolph, J., Sama, S., Atlas, S. J., Carlezon, W. A., Parsegian, A., Lotsch, J., Fillingim, R. B., Maixner, W., Geisslinger, G., Max, M. B. and Woolf, C. J. (2006) GTP cyclohydrolase and tetrahydrobiopterin regulate pain sensitivity and persistence. Nat. Med. 12, 1269-1277. https://doi.org/10.1038/nm1490
- Schnetz-Boutaud, N. C., Anderson, B. M., Brown, K. D., Wright, H. H., Abramson, R. K., Cuccaro, M. L., Gilbert, J. R., Pericak-Vance, M. A. and Haines, J. L. (2009) Examination of tetrahydrobiopterin pathway genes in autism. Genes. Brain and Behavior 8, 753-757. https://doi.org/10.1111/j.1601-183X.2009.00521.x
- Richardson, M. A., Read, L. L., Reilly, M. A., Clelland, J. D. and Clelland, C. L. (2006) Analysis of plasma biopterin levels in psychiatric disorders suggests a common BH4 deficit in schizophrenia and schizoaffective disorder. Neurochem. Res. 32, 107-113. https://doi.org/10.1007/s11064-006-9233-5
- Foxton, R. H., Land, J. M. and Heales, S. J. (2007) Tetrahydrobiopterin availability in Parkinson's and Alzheimer's disease; potential pathogenic mechanisms. Neurochem. Res. 32, 751-756. https://doi.org/10.1007/s11064-006-9201-0
- Vasquez-Vivar, J. (2009) Tetrahydrobiopterin, superoxide and vascular dysfunction. Free Radic. Biol. Med. 15, 1108-1119.
- Fleming, I. (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch. 459, 793-806. https://doi.org/10.1007/s00424-009-0767-7
- Leeming, R. J., Hall, S. K., Surplice, I. M. and Green A. (1990) Relationship between plasma and red cell biopterins in acute and chronic hyperphenylalaninaemia. J. Inherit. Metab. Dis. 13, 883-887. https://doi.org/10.1007/BF01800214
- Hoshiga, M., Hatakeyama, K., Watanabe, M., Shimada, M. and Kagamiyama, H. (1993) Autoradiographic distribution of [14C] tetrahydrobiopterin and its developmental change in mice. J. Pharmacol. Exp. Ther. 267, 971-978.
- Katusic, Z. S. (2001) Vascular endothelial dysfunction: does tetrahydrobiopterin play a role? Am. J. Physiol. Heart Circ. Physiol. 281, 981-986. https://doi.org/10.1152/ajpheart.2001.281.3.H981
- Silberman, G. A., Fan, T. H., Liu, H., Jiao, Z., Xiao, H. D., Lovelock, J. D., Boulden, B. M., Widder, J., Fredd, S., Bernstein, K. E., Wolska, B. M., Dikalov, S., Harrison, D. G. and Dudley, S. C. Jr. (2010) Uncoupled cardiac nitric oxide synthase mediates diastolic dysfunction. Circulation 121, 519-528. https://doi.org/10.1161/CIRCULATIONAHA.109.883777
- Shang, T., Kotamraju, S., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2004) 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthasederived superoxide. J. Biol. Chem. 279, 19099-19112. https://doi.org/10.1074/jbc.M400101200
- Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 15, 1059-1074.
-
Auerbach, G., Herrmann, A., Gutlich, M., Fischer, M., Jacob, U., Bacher, A. and Huber, R. (1997) The 1.25
${\AA}$ crystal structure of sepiapterin reductase reveals its binding mode to pterins and brain neurotransmitters. EMBO J. 16, 7219-7230. https://doi.org/10.1093/emboj/16.24.7219 - Milstien, S. and Kaufman, S. (1989) The biosynthesis of tetrahydrobiopterin in rat brain. Purification and characterization of 6-pyruvoyl tetrahydropterin (2'-oxo) reductase. J. Biol. Chem. 264, 8066-8073.
- Park, Y. S., Heizmann, C. W., Wermuth, B., Levine, R. A., Steinerstauch, P., Guzman, J. and Blau, N. (1991) Human carbonyl and aldose reductase: new catalytic functions in tetrahydrobiopterin biosynthesis. Biochem. Biophys. Res. Commun. 175, 738-744. https://doi.org/10.1016/0006-291X(91)91628-P
- Hirakawa, H., Sawada, H., Yamahama, Y., Takikawa, S., Shintaku, H., Hara, A., Mase, K., Kondo, T. and Iino, T. (2009) Expression analysis of the aldo-keto reductases involved in the novel biosynthetic pathway of tetrahydrobiopterin in human and mouse tissues. J. Biochem. 146, 51-60. https://doi.org/10.1093/jb/mvp042
- Bonafe, L., Thony, B., Penzien, J. M., Czarnecki, B. and Blau, N. (2001) Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am. J. Hum. Genet. 69, 269-277. https://doi.org/10.1086/321970
- Zorzi, G., Redweik, U., Trippe, H., Penzien, J. M., Thony, B. and Blau, N. (2002) Detection of sepiapterin in CSF of patients with sepiapterin reductase deficiency. Mol. Genet. Metab. 75, 174-177. https://doi.org/10.1006/mgme.2001.3273
- Yang, S., Lee, Y. J., Kim, J. M., Park, S., Peris, J., Laipis, P., Park, Y. S., Chung, J. H. and Oh, S. P. (2006) A murine model for human sepiapterin-reductase deficiency. Am. J. Hum. Genet. 78, 575-587. https://doi.org/10.1086/501372
- Craine, J. E., Hall, E. S. and Kaufman, S. (1972) The isolation and characterization of dihydropteridine reductase from sheep liver. J. Biol. Chem. 247, 6082-6091.
- Hevel, J. M., Stewart, J. A., Gross, K. L. and Ayling, J. E. (2006) Can the DCoHalpha isozyme compensate in patients with4a-hydroxy-tetrahydrobiopterin dehydratase/DCoH deficiency? Mol. Genet. Metab. 88, 38-46. https://doi.org/10.1016/j.ymgme.2005.11.014
- Harada, T., Kagamiyama, H. and Hatakeyama, K. (1993) Feedback Regulation Mechanisms for the control of GTP Cyclohydrolase I Activity. Science 260, 1507-1510. https://doi.org/10.1126/science.8502995
- Yoneyama, T. and Hatakeyama, K. (1998) Decameric GTP cyclohydrolase I forms complexes with two pentameric GTP cyclohydrolase I feedback regulatory proteins in the presence of phenylalanine or of a combination of tetrahydrobiopterin and GTP. J. Biol. Chem. 273, 20102-20108. https://doi.org/10.1074/jbc.273.32.20102
- Maita, N., Okada, K, Hatakeyama, K. and Hakoshima, T. (2002) Crystal structure of the stimulatory complex of GTP cyclohydrolase I and its feedback regulatory protein GFRP. Proc. Natl. Acad. Sci. U.S.A. 99, 1212-1217. https://doi.org/10.1073/pnas.022646999
- Milstien, S., Jaffe, H., Kowlessur, D. and Bonner, T. I. (1996) Purification and cloning of the GTP cyclohydrolase I feedback regulatory protein, GFRP. J. Biol. Chem. 271, 19743-19751. https://doi.org/10.1074/jbc.271.33.19743
- Gesierich, A., Niroomand, F. and Tiefenbacher, C. P. (2003) Role of human GTP cyclohydrolase I and its regulatory protein in tetrahydrobiopterin metabolism. Basic Res. Cardiol. 98, 69-75. https://doi.org/10.1007/s00395-003-0394-y
- Widder, J. D., Chen, W., Li, L., Dikalov, S., Thony, B., Hatakeyama, K. and Harrison, D. G. (2007) Regulation of tetrahydrobiopterin biosynthesis by shear stress. Circ. Res. 101, 830-838. https://doi.org/10.1161/CIRCRESAHA.107.153809
- Duncan, J. S. and Litchfield, D. W. (2008) Too much of a good thing: the role of protein kinase CK2 in tumorigenesis and prospects for therapeutic inhibition of CK2. Biochimica et Biophysica Acta. 1784, 33-47. https://doi.org/10.1016/j.bbapap.2007.08.017
- Li, L., Rezvan, A., Salerno, J. C., Husain, A., Kwon, K., Jo, H., Harrison, D. G. and Chen, W. (2010) GTP cyclohydrolase I phosphorylation and interaction with GTP cyclohydrolase feedback regulatory protein provide novel regulation of endothelial tetrahydrobiopterin and nitric oxide. Circ. Res. 106, 328-336. https://doi.org/10.1161/CIRCRESAHA.109.210658
- Kanaya, S., Ikeda, H., Haramaki, N., Murohara, T. and Imaizumi, T. (2001) Intraplatelet tetrahydrobiopterin plays an important role in regulating canine coronary arterial thrombosis by modulating intraplatelet nitric oxide and superoxide generation. Circulation 104, 2478-2484. https://doi.org/10.1161/hc4501.098930
- Lapize, C., Pluss, C., Werner, E. R., Huwiler, A. and Pfeilschifter, J. (1998) Protein kinase C phosphorylates and activates GTP cyclohydrolase I in rat renal mesangial cells. Biochem. Biophys. Res. Commun. 251, 802-805. https://doi.org/10.1006/bbrc.1998.9552
- Hesslinger, C., Kremmer, E., Hultner, L., Ueffing, M. and Ziegler, I. (1998) Phosphorylation of GTP cyclohydrolase I and modulation of Its activity in rodent mast cells. GTP cyclohydrolase I hyperphosphorylation is coupled to high affinity IgE receptor signaling and involves protein kinase C. J. Biol. Chem. 273, 21616-21622. https://doi.org/10.1074/jbc.273.34.21616
- Gilchrist, M., Hesslinger, C. and Befus, A. D. (2003) Tetrahydrobiopterin, a critical factor in the production and role of nitric oxide in mast cells. J. Biol. Chem. 278, 50607-50614. https://doi.org/10.1074/jbc.M307777200
- Du, J., Wei, N., Xu, H., Ge, Y., Vasquez-Vivar, J., Guan, T., Oldham, K. T., Pritchard, K. A. Jr. and Shi, Y. (2009) Identification and functional characterization of phosphorylation sites on GTP cyclohydrolase I. Arterioscler Thromb. Vasc. Biol. 29, 2161-2168. https://doi.org/10.1161/ATVBAHA.109.194464
- Elzaouk, L., Laufs, S., Heerklotz, D., Leimbacher, W., Blau, N., Resibois, A. and Thony, B. (2004) Nuclear localization of tetrahydrobiopterin biosynthetic enzymes. Biochim. Biophys. Acta. 1670, 56-68. https://doi.org/10.1016/j.bbagen.2003.10.015
- Chavan, B., Gillbro, J. M., Rokos, H. and Schallreuter, K. U. (2006) GTP cyclohydrolase feedback regulatory protein controls cofactor 6-tetrahydrobiopterin synthesis in the cytosol and in the nucleus of epidermal keratinocytes and melanocytes. J. Invest. Dermatol. 126, 2481-2489. https://doi.org/10.1038/sj.jid.5700425
- Xu, J., Wu, Y., Song, P., Zhang, M., Wang, S. and Zou, M. H. (2007) Proteasome-dependent degradation of guanosine 5'-triphosphate cyclohydrolase I causes tetrahydrobiopterin deficiency in diabetes mellitus. Circulation 116, 944-953. https://doi.org/10.1161/CIRCULATIONAHA.106.684795
- Wang, S., Xu, J., Song, P., Viollet, B. and Zou, M. H. (2009) In vivo activation of AMP-activated protein kinase attenuates diabetes-enhanced degradation of GTP cyclohydrolase I. Diabetes 58, 1893-1901. https://doi.org/10.2337/db09-0267
- Chiarini, A., Armato, U., Pacchiana, R. and Dal Pra, I. (2009) Proteomic analysis of GTP cyclohydrolase 1 multiprotein complexes in cultured normal adult human astrocytes under both basal and cytokine-activated conditions. Proteomics 9, 1850-1860. https://doi.org/10.1074/mcp.M900107-MCP200
- Peterson, T. E, d'Uscio, L. V., Cao, S., Wang, X. L. and Katusic, Z. S. (2009) Guanosine triphosphate cyclohydrolase I expression and enzymatic activity are present in caveolae of endothelial cells. Hypertension 53, 189-195. https://doi.org/10.1161/HYPERTENSIONAHA.108.115709
- Goligorsky, M. S., Li, H., Brodsky, S. and Chen, J. (2002) Relationships between caveolae and eNOS: everything in proximity and the proximity of everything. Am. J. Physiol. Renal. Physiol. 283, 1-10. https://doi.org/10.1152/ajpcell.00174.2002
- Shi, W., Meininger, C. J., Haynes, T. E., Hatakeyama, K. and Wu, G. (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem. Biophys. 41, 415-434. https://doi.org/10.1385/CBB:41:3:415
- Moens, A. L. and Kass, D. A. (2007) Therapeutic potential of tetrahydrobiopterin for treating vascular and cardiac disease. J. Cardiovasc. Pharmacol. 50, 238-246. https://doi.org/10.1097/FJC.0b013e318123f854
- Kalivendi, S., Hatakeyama, K., Whitsett, J., Konorev, E., Kalyanaraman, B. and Vasquez-Vivar, J. (2005) Changes in tetrahydrobiopterin levels in endothelial cells and adult cardiomyocytes induced by LPS and hydrogen peroxide?A role for GFRP? Free Radic. Biol. Med. 38, 481-491. https://doi.org/10.1016/j.freeradbiomed.2004.11.004
- Werner, E. R., Bahrami, S., Heller, R. and Werner-Felmayer, G. (2002) Bacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 227, 10129-10133.
- Xie, L., Smith, J. A. and Gross, S. S. (1998) GTP cyclohydrolase I inhibition by the prototypic inhibitor 2,4-diamino-6-hydroxypyrimidine. Mechanisms and unanticipated role of GTP cyclohydrolase I feedback regulatory protein. J. Biol. Chem. 273, 21091-21098. https://doi.org/10.1074/jbc.273.33.21091
- Ionova, I. A., Vasquez-Vivar, J., Whitsett, J., Herrnreiter, A., Medhora, M., Cooley, B. C. and Pieper, G. M. (2008) Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 295, 2178-2187. https://doi.org/10.1152/ajpheart.00748.2008
- Tatham, A. L., Crabtree, M. J., Warrick, N., Cai, S., Alp, N. J. and Channon, K. M. (2009) GTP cyclohydrolase I expression, protein and activity determine intracellular tetrahydrobiopterin levels, independent of GTP cyclohydrolase feedback regulatory protein expression. J. Biol. Chem. 284, 13660-13668. https://doi.org/10.1074/jbc.M807959200
- Linscheid, P., Schaffner, A., Blau, N. and Schoedon, G. (1998) Regulation of 6-pyruvoyltetrahydropterin synthase activity and messenger RNA abundance in human vascular endothelial cells. Circulation 98, 1703-1706. https://doi.org/10.1161/01.CIR.98.17.1703
- Franscini, N., Blau, N., Walter, R. B., Schaffner, A. and Schoedon, G. (2003) Critical role of interleukin-1beta for transcriptional regulation of endothelial 6-pyruvoyltetrahydropterin synthase. Arterioscler. Thromb. Vasc. Biol. 23, 50-53. https://doi.org/10.1161/01.ATV.0000099785.65848.F1
- Niederwieser, A., Shintaku, H., Hasler, T., Curtius, H. C., Lehmann, H., Guardamagna, O. and Schmidt, H. (1986) Prenatal diagnosis of "dihydrobiopterin synthetase" deficiency, a variant form of phenylketonuria. Eur. J. Pediatr. 145, 176-178. https://doi.org/10.1007/BF00446058
- Katoh, S. and Sueoka, T. (1984) Sepiapterin reductase exhibits a NADPH-dependent dicarbonyl reductase activity. Biochem. Biophys. Res. Commun. 118, 859-866. https://doi.org/10.1016/0006-291X(84)91474-8
- Ponzone, A., Spada, M., Ferraris, S., Dianzani, I. and de Sanctis, L. (2004) Dihydropteridine reductase deficiency in man: from biology to treatment. Med. Res. Rev. 24, 127-150. https://doi.org/10.1002/med.10055
- Wei, C. C., Wang, Z. Q., Tejero, J., Yang, Y. P., Hemann, C., Hille, R. and Stuehr, D. J. (2008) Catalytic reduction of a tetrahydrobiopterin radical within nitric-oxide synthase. J. Biol. Chem. 25, 11734-11742.
- Woodward, J. J., Nejatyjahromy, Y., Britt, R. D. and Marletta, M. A. (2010) Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase. J. Am. Chem. Soc. 14, 5105-5113.
- Milstien, S. and Katusic, Z. (1999) Oxidation of tetrahydrobiopterin by peroxynitrite: implications for vascular endothelial function. Biochem. Biophys. Res. Commun. 263, 681-684. https://doi.org/10.1006/bbrc.1999.1422
- Rafferty, S. P., Boyington, J. C., Kulansky, R., Sun, P. D. and Malech, H. L. (1999) Stoichiometric arginine binding in the oxygenase domain of inducible nitric oxide synthase requires a single molecule of tetrahydrobiopterin per dimer. Biochem. Biophys. Res. Commun. 257, 344-347. https://doi.org/10.1006/bbrc.1999.0450
- Wever, R. M., Luscher, T. F., Cosentino, F. and Rabelink, T. J. (1998) Atherosclerosis and the two faces of endothelial nitric oxide synthase. Circulation 97, 108-112. https://doi.org/10.1161/01.CIR.97.1.108
- Vasquez-Vivar, J., Kalyanaraman, B., Martasek, P., Hogg, N., Masters, B. S., Karoui, H., Tordo, P. and Pritchard, K. A. Jr. (1998) Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc. Natl. Acad. Sci. U.S.A. 95, 9220-9225. https://doi.org/10.1073/pnas.95.16.9220
- Crabtree, M. J., Smith, C. L., Lam, G., Goligorsky, M. S. and Gross, S. S. (2008) Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. Am. J. Physiol. Heart Circ. Physiol. 294, 1530-1540. https://doi.org/10.1152/ajpheart.00823.2007
- Vasquez-Vivar, J., Whitsett, J., Martasek, P., Hogg, N. and Kalyanaraman, B. (2001) Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic. Biol. Med. 31, 975-985. https://doi.org/10.1016/S0891-5849(01)00680-3
- Sun, J., Druhan, L. J. and Zweier, J. L. (2008) Dose dependent effects of reactive oxygen and nitrogen species on the function of neuronal nitric oxide synthase. Arch. Biochem. Biophys. 471, 126-133. https://doi.org/10.1016/j.abb.2008.01.003
- Sun, J., Druhan, L. J. and Zweier, J. L. (2010) Reactive oxygen and nitrogen species regulate inducible nitric oxide synthase function shifting the balance of nitric oxide and superoxide production. Arch. Biochem. Biophys. 494, 130-137. https://doi.org/10.1016/j.abb.2009.11.019
- Grobe, A. C., Wells, S. M., Benavidez, E., Oishi, P., Azakie, A., Fineman, J. R. and Black, S. M. (2006) Increased oxidative stress in lambs with increased pulmonary blood flow and pulmonary hypertension: role of NADPH oxidase and endothelial NO synthase. Am. J. Physiol. Lung Cell Mol. Physiol. 290, 1069-1077. https://doi.org/10.1152/ajplung.00408.2005
- Chrissobolis, S. and Faraci, F. M. (2008) Trends in molecular medicine. The role of oxidative stress and NADPH oxidase in cerebrovascular disease. Trends Mol. Med. 14, 495-502. https://doi.org/10.1016/j.molmed.2008.09.003
- Padmaja, S. and Huie, R. E. (1993) The reaction of nitric oxide with organic peroxyl radicals. Biochem. Biophys. Res. Commun. 195, 539-544. https://doi.org/10.1006/bbrc.1993.2079
- Davis, M. D., Kaufman, S. and Milstien, S. (1988) The auto- oxidation of tetrahydrobiopterin. Eur. J. Biochem. 173, 345-351. https://doi.org/10.1111/j.1432-1033.1988.tb14004.x
- Laursen, J. B., Somers, M., Kurz, S., McCann, L., Warnholtz, A., Freeman, B. A., Tarpey, M., Fukai, T. and Harrison, D. G. (2001) Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103, 1282-1288. https://doi.org/10.1161/01.CIR.103.9.1282
- Shimizu, S., Ishii, M., Miyasaka, Y., Wajima, T., Negoro, T., Hagiwara, T. and Kiuchi, Y. (2005) Possible involvement of hydroxyl radical on the stimulation of tetrahydrobiopterin synthesis by hydrogen peroxide and peroxynitrite in vascular endothelial cells. Int. J. Biochem. Cell Biol. 37, 864-875. https://doi.org/10.1016/j.biocel.2004.11.003
- Brewer, G. J. (2007) Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer's disease. Exp. Biol. Med. 232, 323-335.
- Shimizu, S., Shiota, K., Yamamoto, S., Miyasaka, Y., Ishii, M., Watabe, T., Nishida, M., Mori, Y., Yamamoto, T. and Kiuchi, Y. (2003) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through the induction of GTP-cyclohydrolase I and increases nitric oxide synthase activity in vascular endothelial cells. Free Radic. Biol. Med. 34, 1343-1352. https://doi.org/10.1016/S0891-5849(03)00172-2
- Shimizu, S., Hiroi, T., Ishii, M., Hagiwara, T., Wajima, T., Miyazaki, A. and Kiuchi, Y. (2008) Hydrogen peroxide stimulates tetrahydrobiopterin synthesis through activation of the Jak2 tyrosine kinase pathway in vascular endothelial cells. Int. J. Biochem. Cell Biol. 40, 755-765. https://doi.org/10.1016/j.biocel.2007.10.011
- Chen, W., Druhan, L. J., Chen, C. A., Hemann, C., Chen, Y. R., Berka, V., Tsai, A. L. and Zweier, J. L. (2010) Peroxynitrite induces destruction of the tetrahydrobiopterin and heme in endothelial nitric oxide synthase: transition from reversible to irreversible enzyme inhibition. Biochemistry 49, 3129-3137. https://doi.org/10.1021/bi9016632
- Forstermann, U. (2006) Janus-faced role of endothelial NO synthase in vascular disease: uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol. Chem. 387, 1521-1533. https://doi.org/10.1515/BC.2006.190
- Chalupsky, K. and Cai, H. (2005) Endothelial dihydrofolate reductase: critical for nitric oxide bioavailability and role in angiotensin II uncoupling of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. U.S.A. 102, 9056-9061. https://doi.org/10.1073/pnas.0409594102
- Crabtree, M. J., Tatham, A. L., Hale, A. B., Alp, N. J. and Channon, K. M. (2009) Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128-28136. https://doi.org/10.1074/jbc.M109.041483
- Lee, C. K., Han, J. S., Won, K. J., Jung, S. H., Park, H. J., Lee, H. M., Kim, J., Park, Y. S., Kim, H. J., Park, P. J., Park, T. K. and Kim, B. (2009) Diminished expression of dihydropteridine reductase is a potent biomarker for hypertensive vessels. Proteomics 9, 4851-4858. https://doi.org/10.1002/pmic.200800973
-
Hasse, S., Gibbons, N. C., Rokos, H., Marles, L. K and Schallreuter, K. U. (2004) Perturbed 6-tetrahydrobiopterin recycling via decreased dihydropteridine reductase in vitiligo: more evidence for
$H_2O_2$ stress. J. Invest. Dermatol. 122, 307-313. https://doi.org/10.1046/j.0022-202X.2004.22230.x - Shinozaki, K., Hirayama, A., Nishio, Y., Yoshida, Y., Ohtani, T., Okamura, T., Masada, M., Kikkawa, R., Kodama, K. and Kashiwagi, A. (2001) Coronary endothelial dysfunction in the insulin-resistant state is linked to abnormal pteridine metabolism and vascular oxidative stress. J. Am. Coll. Cardiol. 38, 1821-1828. https://doi.org/10.1016/S0735-1097(01)01659-X
- Waring, P. (1986) The time-dependent inactivation of human brain dihydropteridine reductase by the oxidation products of L-dopa. Eur. J. Biochem. 3, 305-310. https://doi.org/10.1111/j.1432-1033.1968.tb19530.x
- Khoo, J. P., Zhao, L., Alp, N. J., Bendall, J. K., Nicoli, T., Rockett, K., Wilkins, M. R. and Channon, K. M. (2005) Pivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension. Circulation 111, 2126-2133. https://doi.org/10.1161/01.CIR.0000162470.26840.89
- Nandi, M., Miller, A., Stidwill, R., Jacques, T. S., Lam, A. A., Haworth, S., Heales, S. and Vallance, P. (2005) Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse. Circulation 111, 2086-2090. https://doi.org/10.1161/01.CIR.0000163268.32638.F4
- Shang, T., Kotamraju, S., Zhao, H., Kalivendi, S. V., Hillard, C. J. and Kalyanaraman, B. (2005) Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide and proteasome activation. Free Radic. Biol. Med. 39, 1059-1074. https://doi.org/10.1016/j.freeradbiomed.2005.05.022
- Cardaci, S., Filomeni, G., Rotilio, G. and Ciriolo, M. R. (2010) p38MAPK/p53 signaling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition: implication for neurodegeneration. Biochem. J. Published online [PMID: 20590525].
- Casadei, B. (2006) The emerging role of neuronal nitric oxide synthase in the regulation of myocardial function. Exp. Physiol. 91, 943-955. https://doi.org/10.1113/expphysiol.2006.035493
피인용 문헌
- Administration of tetrahydrobiopterin improves the microcirculation and outcome in an ovine model of septic shock* vol.40, pp.10, 2012, https://doi.org/10.1097/CCM.0b013e31825b88ba
- Arginine and nitric oxide synthase: Regulatory mechanisms and cardiovascular aspects vol.58, pp.1, 2014, https://doi.org/10.1002/mnfr.201300033
- Oxidative stress and inhibition of nitric oxide generation underlie methotrexate-induced senescence in human colon cancer cells 2018, https://doi.org/10.1016/j.mad.2017.07.006
- Simultaneous quantification of tetrahydrobiopterin, dihydrobiopterin, and biopterin by liquid chromatography coupled electrospray tandem mass spectrometry vol.430, pp.2, 2012, https://doi.org/10.1016/j.ab.2012.08.019
- Tetrahydrobiopterin is functionally distinguishable from tetrahydrodictyopterin inDictyostelium discoideumAx2 vol.585, pp.19, 2011, https://doi.org/10.1016/j.febslet.2011.08.026
- A Pilot Study of Fluorodeoxyglucose Positron Emission Tomography Findings in Patients with Phenylketonuria before and during Sapropterin Supplementation vol.9, pp.3, 2013, https://doi.org/10.3988/jcn.2013.9.3.151
- Mögliche molekulare Mechanismen einer Spontanremission nach Hörsturz vol.59, pp.11, 2011, https://doi.org/10.1007/s00106-011-2358-0
- Hyperoxia but not ambient pressure decreases tetrahydrobiopterin level without affecting the enzymatic capability of nitric oxide synthase in human endothelial cells vol.113, pp.7, 2013, https://doi.org/10.1007/s00421-013-2595-x
- Combined analysis of Perca fluviatilis reproductive performance and oocyte proteomic profile vol.78, pp.2, 2012, https://doi.org/10.1016/j.theriogenology.2012.02.023
- The basis for folinic acid treatment in neuro-psychiatric disorders vol.126, 2016, https://doi.org/10.1016/j.biochi.2016.04.005
- Tetrahydropteridines possess antioxidant roles to guard against glucose-induced oxidative stress in Dictyostelium discoideum vol.46, pp.2, 2013, https://doi.org/10.5483/BMBRep.2013.46.2.128
- Nitric oxide synthase inhibition and oxidative stress in cardiovascular diseases: Possible therapeutic targets? vol.140, pp.3, 2013, https://doi.org/10.1016/j.pharmthera.2013.07.004
- Simplified HPLC methodology for quantifying biological pterins by selective oxidation vol.1055-1056, 2017, https://doi.org/10.1016/j.jchromb.2017.04.018
- Reply to Octavia, Wingler, Schmidt, and Moens vol.111, pp.1, 2011, https://doi.org/10.1152/japplphysiol.00495.2011
- Inorganic nitrite supplementation for healthy arterial aging vol.116, pp.5, 2014, https://doi.org/10.1152/japplphysiol.01100.2013