DOI QR코드

DOI QR Code

인공신경망 기법을 이용한 장래 잠재증발산량 산정

Estimation of Future Reference Crop Evapotranspiration using Artificial Neural Networks

  • 이은정 (서울대학교 농업생명과학연구원) ;
  • 강문성 (서울대학교 조경.지역시스템공학부, 농업생명과학연구원) ;
  • 박정안 (서울대학교 생태조경.지역시스템공학부) ;
  • 최진영 (서울대학교 생태조경.지역시스템공학부) ;
  • 박승우 (서울대학교 조경.지역시스템공학부, 농업생명과학연구원)
  • 투고 : 2010.04.13
  • 심사 : 2010.07.21
  • 발행 : 2010.09.30

초록

Evapotranspiration (ET) is one of the basic components of the hydrologic cycle and is essential for estimating irrigation water requirements. In this study, artificial neural network (ANN) models for reference crop evapotranspiration ($ET_0$) estimation were developed on a monthly basis (May~October). The models were trained and tested for Suwon, Korea. Four climate factors, daily maximum temperature ($T_{max}$), daily minimum temperature ($T_{min}$), rainfall (R), and solar radiation (S) were used as the input parameters of the models. The target values of the models were calculated using Food and Agriculture Organization (FAO) Penman-Monteith equation. Future climate data were generated using LARS-WG (Long Ashton Research Station-Weather Generator), stochastic weather generator, based on HadCM3 (Hadley Centre Coupled Model, ver.3) A1B scenario. The evapotranspirations were 549.7 mm/yr in baseline period (1973-2008), 558.1 mm/yr in 2011-2030, 593.0 mm/yr in 2046-2065, and 641.1 mm/yr in 2080-2099. The results showed that the ANN models achieved good performances in estimating future reference crop evapotranspiration.

키워드

참고문헌

  1. Allen, R. G., L. S. Periera, D. Raes, and M. Smith, 1998. Crop evapotranspiration: Guidelines for computing crop requirements, Irrigation and Drainage Paper Vol. 56. Food and Agriculture Organization of the United Nations.
  2. Bae, D. H., I. W. Jung, and W. T. Kwon, 2007. Generation of high resolution scenarios for climate change impacts on water resources(I): Climate scenarios on each sub-basins. Journal of Korea Water Resources Association 40(3): 191-204 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.3.191
  3. Blaney, H. F., and W. D. Criddle, 1962. Determining consumptive use irrigation water requirements. USDA. Tech. Bul. 1275: 59.
  4. Chung, S. O, 2009. Climate change impacts on paddy irrigation requirement in the Nakdong River Basin. Journal of the Korean Society of Agricultural Engineers 51(2): 35-44 (in Korean). https://doi.org/10.5389/KSAE.2009.51.2.035
  5. FAO, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.
  6. Gorka L., O. Amaia, and J. Jose, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country. Agricultural Water Management 95: 553-565. https://doi.org/10.1016/j.agwat.2007.12.011
  7. Harvey, R. L., 1994. Neural Network Principles. Prentice Hall, NewJersy.
  8. Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009. Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). https://doi.org/10.5389/KSAE.2009.51.3.025
  9. Huynh, N. P. and S. Sureerattanan, 2000. Neural networks for filtering and forecasting of daily and monthly streamflows. Water Resources Publications, LLc, WEESHE, Hydrologic modeling, 203-218.
  10. Intergovernmental Panel on Climate Change (IPCC), 2007. Fourth Assessment Report.
  11. Intergovernmental Panel on Climate Change (IPCC), 2008. Technical Paper on Climate Change and Water.
  12. Jain, S. K., P. C. Nayak, and K. P. Sudheer, 2008. Models for estimating evapotranspiration using artificial neural networks and their physical interpretation. Hydrological Processes 22: 2225-2234. https://doi.org/10.1002/hyp.6819
  13. Jensen, M. E., R. D. Burman, and R. G. Allen, 1990. ASCE Manual and reports on Engineering Practices 330-331. No. 70. NewYork: Evaporation and irrigation water requirements.
  14. Jung, S., 2004. Artificial Intelligence system I - Structure and instruction of neural network. Chungnam National University Press, Daejeon (in Korean).
  15. Kang, M. S., and S. W. Park, 2003. Short-term flood forecasting using artificial neural networks. Journal of the Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
  16. Kumar, M., N. S. Raghuwanshi, and R. Singh, 2009. Development and validation of GANN model for evapotranspiration estimation. Journal of Hydrologic Engineering 41(2): 131-140. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:2(131)
  17. Ministry of Construction & Transportation (MOCT), 2006, National Water Resources Plan update (in Korean).
  18. Odhiambo, L. O., R. E. Yoder, D. C. Yoder, and J. W Hines, 2001. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans. ASAE 44: 1625-1633.
  19. Penman, H. L., 1948. Natural evaporation from open water, bare soil, and grass. The Royal Society 193: 120-145. https://doi.org/10.1098/rspa.1948.0037
  20. Richardson, C. W., and D. A. Wright, 1984. WGEN: A Model for Generating Daily Weather Variables, United States Department of Agriculture Research Service, ARS-8.
  21. Semenov, M. A., and E. M. Barrow, 2002. LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies, Harpenden.
  22. Son, G. T., 2003. Introduction of Computation Statistics (3th ed). Freedom Academy, Seoul.
  23. Sudheer, K. P., A. K. Gosain, and K. S. Ramasastri, 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering 129(3): 214- 221. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214)
  24. Xiaoqin, D., S. Haibin, L. Yunsheng, O. Zhu, and H. Zailin, 2009. Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes 23: 442- 450. https://doi.org/10.1002/hyp.7153
  25. Zanetti, S. S., E. F. Sousa, V. P. S. Oliveira, F. T. Almeida, and S. Bernardo, 2007. Estimation evapotranspiration using neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering 133(2): 83-89. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(83)

피인용 문헌

  1. Applicability of Satellite SAR Imagery for Estimating Reservoir Storage vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.007
  2. Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.075