References
- Allen, R. G., L. S. Periera, D. Raes, and M. Smith, 1998. Crop evapotranspiration: Guidelines for computing crop requirements, Irrigation and Drainage Paper Vol. 56. Food and Agriculture Organization of the United Nations.
- Bae, D. H., I. W. Jung, and W. T. Kwon, 2007. Generation of high resolution scenarios for climate change impacts on water resources(I): Climate scenarios on each sub-basins. Journal of Korea Water Resources Association 40(3): 191-204 (in Korean). https://doi.org/10.3741/JKWRA.2007.40.3.191
- Blaney, H. F., and W. D. Criddle, 1962. Determining consumptive use irrigation water requirements. USDA. Tech. Bul. 1275: 59.
- Chung, S. O, 2009. Climate change impacts on paddy irrigation requirement in the Nakdong River Basin. Journal of the Korean Society of Agricultural Engineers 51(2): 35-44 (in Korean). https://doi.org/10.5389/KSAE.2009.51.2.035
- FAO, 1998. Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.
- Gorka L., O. Amaia, and J. Jose, 2008. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country. Agricultural Water Management 95: 553-565. https://doi.org/10.1016/j.agwat.2007.12.011
- Harvey, R. L., 1994. Neural Network Principles. Prentice Hall, NewJersy.
- Hong, E. M., J. Y. Choi, S. H. Lee, S. H. Yoo, and M. S. Kang, 2009. Estimation of Paddy Rice Evapotranspiration Considering Climate Change Using LARS-WG. Journal of the Korean Society of Agricultural Engineers 51(3): 25-35 (in Korean). https://doi.org/10.5389/KSAE.2009.51.3.025
- Huynh, N. P. and S. Sureerattanan, 2000. Neural networks for filtering and forecasting of daily and monthly streamflows. Water Resources Publications, LLc, WEESHE, Hydrologic modeling, 203-218.
- Intergovernmental Panel on Climate Change (IPCC), 2007. Fourth Assessment Report.
- Intergovernmental Panel on Climate Change (IPCC), 2008. Technical Paper on Climate Change and Water.
- Jain, S. K., P. C. Nayak, and K. P. Sudheer, 2008. Models for estimating evapotranspiration using artificial neural networks and their physical interpretation. Hydrological Processes 22: 2225-2234. https://doi.org/10.1002/hyp.6819
- Jensen, M. E., R. D. Burman, and R. G. Allen, 1990. ASCE Manual and reports on Engineering Practices 330-331. No. 70. NewYork: Evaporation and irrigation water requirements.
- Jung, S., 2004. Artificial Intelligence system I - Structure and instruction of neural network. Chungnam National University Press, Daejeon (in Korean).
- Kang, M. S., and S. W. Park, 2003. Short-term flood forecasting using artificial neural networks. Journal of the Korean Society of Agricultural Engineers 45(2): 45-57 (in Korean).
- Kumar, M., N. S. Raghuwanshi, and R. Singh, 2009. Development and validation of GANN model for evapotranspiration estimation. Journal of Hydrologic Engineering 41(2): 131-140. https://doi.org/10.1061/(ASCE)1084-0699(2009)14:2(131)
- Ministry of Construction & Transportation (MOCT), 2006, National Water Resources Plan update (in Korean).
- Odhiambo, L. O., R. E. Yoder, D. C. Yoder, and J. W Hines, 2001. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans. ASAE 44: 1625-1633.
- Penman, H. L., 1948. Natural evaporation from open water, bare soil, and grass. The Royal Society 193: 120-145. https://doi.org/10.1098/rspa.1948.0037
- Richardson, C. W., and D. A. Wright, 1984. WGEN: A Model for Generating Daily Weather Variables, United States Department of Agriculture Research Service, ARS-8.
- Semenov, M. A., and E. M. Barrow, 2002. LARS-WG: A Stochastic Weather Generator for Use in Climate Impact Studies, Harpenden.
- Son, G. T., 2003. Introduction of Computation Statistics (3th ed). Freedom Academy, Seoul.
- Sudheer, K. P., A. K. Gosain, and K. S. Ramasastri, 2003. Estimating actual evapotranspiration from limited climatic data using neural computing technique. Journal of Irrigation and Drainage Engineering 129(3): 214- 221. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214)
- Xiaoqin, D., S. Haibin, L. Yunsheng, O. Zhu, and H. Zailin, 2009. Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrological Processes 23: 442- 450. https://doi.org/10.1002/hyp.7153
- Zanetti, S. S., E. F. Sousa, V. P. S. Oliveira, F. T. Almeida, and S. Bernardo, 2007. Estimation evapotranspiration using neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering 133(2): 83-89. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(83)
Cited by
- Applicability of Satellite SAR Imagery for Estimating Reservoir Storage vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.007
- Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed vol.53, pp.6, 2011, https://doi.org/10.5389/KSAE.2011.53.6.075