DOI QR코드

DOI QR Code

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Received : 2010.07.02
  • Accepted : 2010.08.17
  • Published : 2010.09.01

Abstract

In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.

Keywords

References

  1. Avila-Adame, C. and Koller, W. 2003. Characterization of spontaneous mutants of Magnaporthe grisea expressing stable resistance to the Qo-inhibiting fungicide azoxystrobin. Curr. Genet. 42:332-338. https://doi.org/10.1007/s00294-002-0356-1
  2. Boyer, J. and Liu, R. H. 2004. Apple phytochemicals and their health benefits. Nutr. J. 3:5. https://doi.org/10.1186/1475-2891-3-5
  3. Cho, J.-Y., Choi, G. J., Lee, S.-W., Jang, K. S., Lim, H. K., Lim, C. H., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2006. Antifungal activity against Colletotrichum spp. of curcuminoids isolated from Curcuma longa L. rhizomes. J. Microbiol. Biotechnol. 16:280-285.
  4. Choi, G. J., Kim, J.-C., Jang, K. S., Lim, H. K., Park, I.-K., Shin, S. C. and Cho, K. Y. 2006. In vivo antifungal activities of 67 plant fruit extracts against six plant pathogenic fungi. J. Microbiol. Biotechnol. 16:491-495.
  5. Cohen, Y. and Reuveni M. 1983. Occurrence of metalaxyl-resistant isolates of Phytophthora infestans in potato fields in Israel. Phytopathology 73:925-927. https://doi.org/10.1094/Phyto-73-925
  6. Devi, M. A. and Das, N. P. 1993. In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2. Cancer Lett. 69:191-196. https://doi.org/10.1016/0304-3835(93)90174-8
  7. Eberhardt, M. V., Lee, C. Y. and Liu, R. H. 2000. Antioxidant activity of fresh apples. Nature 405:903-904.
  8. Erwin, D. C. and Ribeiro, O. K. 1996. Introduction to the genus Phytophthora. In: Phytophthora Disease Worldwide pp. 1-7. The American Phytopathological Society, St. Paul, MN, USA.
  9. Escarpa, A. and Gonzalez, M. C. 1998. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. J. Chromatogr. A. 823:331-337. https://doi.org/10.1016/S0021-9673(98)00294-5
  10. Fawcett, C. H. and Spencer, D. M. 1966. Antifungal compounds in apple fruit infected with Sclerotinia fructigena. Nature 211: 548-549. https://doi.org/10.1038/211548a0
  11. Fawcett, C. H. and Spencer, D. M. 1967. Antifungal phenolic acids in apple fruits after infection with Sclerotinia fructigena. Ann. Appl. Biol. 60:87-96. https://doi.org/10.1111/j.1744-7348.1967.tb05925.x
  12. Fawcett, C. H. and Spencer, D. M. 1968. Sclerotinia fructigena infection and chlorogenic acid content in relation to antifungal compounds in apple fruits. Ann. Appl. Biol. 61:245-253. https://doi.org/10.1111/j.1744-7348.1968.tb04529.x
  13. Gisi, U., Chin, K. M., Knapova, G., Kung Farber, R., Mohr, U., Parisi, S., Sierotzki, H. and Steinfeld, U. 2000. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurin fungicides. Crop Prot. 19:863-872. https://doi.org/10.1016/S0261-2194(00)00114-9
  14. He, X. and Liu, R. H. 2007. Triterpenoids isolated from apple peels have potent antiproliferative activity and may be partially responsible for apple’s anticancer activity. J. Agri. Food Chem. 55:4366-4370. https://doi.org/10.1021/jf063563o
  15. Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura, K., Takeda, T., Amano, T. and Hollomon, D. W. 2001. Occurrence and molecular characterization of strobilurin resistance in cucumber powdery mildew and downy mildew. Phytopathology 91:1166-1171. https://doi.org/10.1094/PHYTO.2001.91.12.1166
  16. Jeun, Y. C., Park, K. S. and Kim, C. H. 2001. Different mechanisms of induced systemic resistance (ISR) and systemic acquired resistance (SAR) against Colletotrichum orbiculare on the leaves of cucumber plants. Mycobiology 29:19-26.
  17. Jordan, N. J. and Holman, G. D. 1992. Photolabelling of liver-type glucose-transporter isoform GLUT2 with an azitrifluoroethylbenzoyl-substituted bis-D-mannose. Biochem. J. 286:649-656. https://doi.org/10.1042/bj2860649
  18. Kern, M. and Pahlke, G., Balavenkatraman, K. K., Bohmer, F. D. and Marko, D. 2007. Apple polyphenols affect protein kinase C activity and the onset of apoptosis in human colon carcinoma cells. J. Agric. Food Chem. 55:4999-5006. https://doi.org/10.1021/jf063158x
  19. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y. 2001. Activity against plant pathogenic fungi of phomalactone isolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  20. Knekt, P., Jarvinen, R., Reunanen, A. and Maatela, J. 1996. Flavonoid intake and coronary mortality in Finland: a cohort study. Br. Med. J. 312:478-481. https://doi.org/10.1136/bmj.312.7029.478
  21. Krebitz, M., Wagner, B., Ferreira, F., Peterbauer, C., Campillo, N., Witty, M., Kolarich, D., Steinkeller, H., Scheiner, O. and Breiteneder, H. 2003. Plant-based heterologous expression of Mal d 2, a thaumatin-like protein and allergen of apple (Malus domestica), and its characterization as an antifungal protein. J. Mol. Biol. 329:721-730. https://doi.org/10.1016/S0022-2836(03)00403-0
  22. Lee, K. W., Kim, Y. J., Lee, H. J. and Lee, C. Y. 2003. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agri. Food Chem. 51:6516-6520. https://doi.org/10.1021/jf034475w
  23. Lee, K. W., Lee, S. J., Kang, N. J., Lee, C. Y. and Lee, H. J. 2004. Effects of phenolics in Empire apples on hydrogen peroxideinduced inhibition of gap-junctional intercellular communication. Biofactors 21:361-365. https://doi.org/10.1002/biof.552210169
  24. Le Marchand, L., Murphy, S. P., Hankin, J. H., Wilkens, L. R. and Kolonel, L. N. 2000. Intake of flavonoids and lung cancer. J. Natl. Cancer Inst. 92:154-160. https://doi.org/10.1093/jnci/92.2.154
  25. Lin, Y. P., Hsu, F. L., Chen, C. S., Chern, J. W. and Lee, M. H. 2007. Constituents from the Formosan apple reduce tyrosinase activity in human epidermal melanocytes. Phytochemistry 68: 1189-1199. https://doi.org/10.1016/j.phytochem.2007.02.001
  26. Milling, R. J. and Richardson, C. J. 1995. Mode of action of the anilinopyrimidine fungicide pyrimethanil. 2. Effects on enzyme secretion in Botrytis cinerea. Pestic. Sci. 45:43-48. https://doi.org/10.1002/ps.2780450107
  27. Minami, H., Kim, J. R., Tada, K., Takahashi, F., Miyamoto, K., Nakabou, Y., Sakai, K. and Hagihira, H. 1993. Inhibition of glucose absorption by phlorizin affects intestinal functions in rats. Gastroenterology 105:692-697. https://doi.org/10.1016/0016-5085(93)90884-F
  28. Miura, I., Kamakura, T., Maeno, S., Hayashi, S. and Yamaguchi, I. 1994. Inhibition of enzyme secretion in plant pathogen by mepanipyrim, a novel fungicides. Pestic. Biochem. Physiol. 36:303-324.
  29. Murphy, W. A. and Lumsden, R. D. 1984. Phloretin inhibition of glucose transport by the tapeworm Hymenolepis diminuta: A kinetic analysis. Comp. Biochem. Physiol., Part A 78:749-754. https://doi.org/10.1016/0300-9629(84)90627-3
  30. Nakamura, Y., Watanabe, S., Miyake, N., Kohno, H., and Osawa, T. 2003. Dihydrochalcones: Evaluation as novel radical scavenging antioxidants. J. Agric. Food Chem. 51:3309-3312. https://doi.org/10.1021/jf0341060
  31. Nelson, J. A. and Falk, R. E. 1993. The efficacy of phloridzin and phloretin on tumor cell growth. Anticancer Res. 13:2287-2292.
  32. Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester, M., Laan, R., Gerritis, H., Weisbeek, P. J. and Van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1080. https://doi.org/10.1105/tpc.10.9.1571
  33. Pontais, I, Treutter, D., Paulin, J.-P., and Brisset, M.-N. 2008. Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiologia Plantarum 132:262-271. https://doi.org/10.1111/j.1399-3054.2007.01004.x
  34. Salter, D. W., Custead-Jones, S. and Cook, J. S. 1978. Quercetin inhibits hexose transport in a human diploid fibroblast. J. Membr. Biol. 40:67-76. https://doi.org/10.1007/BF01909739
  35. Shattock, R. C. 2002. Phytophthora infestans: populations, pathogenicity and phenylamides. Pest Manag. Sci. 58:944-950. https://doi.org/10.1002/ps.527
  36. Sticher, L., Mauch-Mani, B. and Metraux, J. P. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35:235-270. https://doi.org/10.1146/annurev.phyto.35.1.235
  37. Takagaki, M., Kaku, K., Watanabe, S., Kawai, K., Shimizu, T., Sawada, H., Kumakura, K. and Nagayama, K. 2004. Mechanism of resistance to carpropamid in Magnaporthe grisea. Pest Manag. Sci. 60:921-926. https://doi.org/10.1002/ps.896
  38. Tsao, R., Yang, R., Young, J. C. and Zhu, H. 2003. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem. 51:6347-6353. https://doi.org/10.1021/jf0346298
  39. Uesugi, Y. 1981. Resistance to fungicides in Pyricularia oryzae. J. Pestic. Sci. 6:239-246. https://doi.org/10.1584/jpestics.6.239
  40. Xing, N., Chen, Y., Mitchell, S. H., Young, C. Y. F. 2001. Quercetin inhibits the expression and function of the androgen receptor in LNCaP prostate cancer cells. Carcinogenesis 22:409-414. https://doi.org/10.1093/carcin/22.3.409
  41. Yoon, H. and Liu, R. H. 2007. Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells. J. Agri. Food Chem. 55:3167-3173. https://doi.org/10.1021/jf0632379

Cited by

  1. Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids vol.90, 2013, https://doi.org/10.1016/j.phytochem.2013.02.009
  2. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings vol.113, 2017, https://doi.org/10.1016/j.soilbio.2017.06.011
  3. Targeted Metabolic Profiling Indicates Apple Rootstock Genotype-Specific Differences in Primary and Secondary Metabolite Production and Validate Quantitative Contribution From Vegetative Growth vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01336