DOI QR코드

DOI QR Code

Control Efficacy of Phloretin Isolated from Apple Fruits Against Several Plant Diseases

  • Received : 2010.07.02
  • Accepted : 2010.08.17
  • Published : 2010.09.01

Abstract

In the course of a searching natural antifungal compounds from plant sources, we found that the methanol extract ($3,000\;{\mu}g/ml$) of Malus domestica fruits had potential of control against rice blast (Magnaporthe grisea) and tomato late blight (Phytophthora infestans). Under bioassay-guided purification, we isolated phloretin, a phenolic compound, with in vivo antifungal activity against M. grisea. By 1-day protective application of phloretin ($500\;{\mu}g/ml$), the compound strongly inhibited the disease development of M. grisea and P. infestans on rice and tomato seedlings, respectively. And red pepper anthracnose caused by Colletotrichum coccodes also was moderately suppressed. However, rice sheath blight (Rhizoctonia solani AG1), and barley powdery mildew (Blumeria graminis f. sp. hordei) were hardly controlled. In addition, the compound showed in vitro antifungal activity against some plant pathogenic fungi including Phytophthora capsici, Alternaria panax, Sclerotinia sclerotiorum, R. solani AG4, and M. grisea. This is the first report on the antifungal activity of phloretin against plant pathogenic fungi.

Keywords

References

  1. Avila-Adame, C. and Koller, W. 2003. Characterization of spontaneousmutants of Magnaporthe grisea expressing stable resistanceto the Qo-inhibiting fungicide azoxystrobin. Curr.Genet. 42:332-338. https://doi.org/10.1007/s00294-002-0356-1
  2. Boyer, J. and Liu, R. H. 2004. Apple phytochemicals and theirhealth benefits. Nutr. J. 3:5. https://doi.org/10.1186/1475-2891-3-5
  3. Cho, J.-Y., Choi, G. J., Lee, S.-W., Jang, K. S., Lim, H. K., Lim, C.H., Lee, S. O., Cho, K. Y. and Kim, J.-C. 2006. Antifungalactivity against Colletotrichum spp. of curcuminoids isolatedfrom Curcuma longa L. rhizomes. J. Microbiol. Biotechnol.16:280-285.
  4. Choi, G. J., Kim, J.-C., Jang, K. S., Lim, H. K., Park, I.-K., Shin,S. C. and Cho, K. Y. 2006. In vivo antifungal activities of 67plant fruit extracts against six plant pathogenic fungi. J. Microbiol.Biotechnol. 16:491-495.
  5. Cohen, Y. and Reuveni M. 1983. Occurrence of metalaxyl-resistantisolates of Phytophthora infestans in potato fields inIsrael. Phytopathology 73:925-927. https://doi.org/10.1094/Phyto-73-925
  6. Devi, M. A. and Das, N. P. 1993. In vitro effects of natural plantpolyphenols on the proliferation of normal and abnormalhuman lymphocytes and their secretions of interleukin-2. CancerLett. 69:191-196. https://doi.org/10.1016/0304-3835(93)90174-8
  7. Eberhardt, M. V., Lee, C. Y. and Liu, R. H. 2000. Antioxidantactivity of fresh apples. Nature 405:903-904.
  8. Erwin, D. C. and Ribeiro, O. K. 1996. Introduction to the genusPhytophthora. In: Phytophthora Disease Worldwide pp. 1-7.The American Phytopathological Society, St. Paul, MN, USA.
  9. Escarpa, A. and Gonzalez, M. C. 1998. High-performance liquidchromatography with diode-array detection for the determinationof phenolic compounds in peel and pulp from differentapple varieties. J. Chromatogr. A. 823:331-337. https://doi.org/10.1016/S0021-9673(98)00294-5
  10. Fawcett, C. H. and Spencer, D. M. 1966. Antifungal compoundsin apple fruit infected with Sclerotinia fructigena. Nature 211:548-549. https://doi.org/10.1038/211548a0
  11. Fawcett, C. H. and Spencer, D. M. 1967. Antifungal phenolicacids in apple fruits after infection with Sclerotinia fructigena.Ann. Appl. Biol. 60:87-96. https://doi.org/10.1111/j.1744-7348.1967.tb05925.x
  12. Fawcett, C. H. and Spencer, D. M. 1968. Sclerotinia fructigenainfection and chlorogenic acid content in relation to antifungalcompounds in apple fruits. Ann. Appl. Biol. 61:245-253. https://doi.org/10.1111/j.1744-7348.1968.tb04529.x
  13. Gisi, U., Chin, K. M., Knapova, G., Kung Farber, R., Mohr, U.,Parisi, S., Sierotzki, H. and Steinfeld, U. 2000. Recent developmentsin elucidating modes of resistance to phenylamide,DMI and strobilurin fungicides. Crop Prot. 19:863-872. https://doi.org/10.1016/S0261-2194(00)00114-9
  14. He, X. and Liu, R. H. 2007. Triterpenoids isolated from applepeels have potent antiproliferative activity and may be partiallyresponsible for apple’s anticancer activity. J. Agri. FoodChem. 55:4366-4370. https://doi.org/10.1021/jf063563o
  15. Ishii, H., Fraaije, B. A., Sugiyama, T., Noguchi, K., Nishimura,K., Takeda, T., Amano, T. and Hollomon, D. W. 2001. Occurrenceand molecular characterization of strobilurin resistancein cucumber powdery mildew and downy mildew. Phytopathology91:1166-1171. https://doi.org/10.1094/PHYTO.2001.91.12.1166
  16. Jeun, Y. C., Park, K. S. and Kim, C. H. 2001. Different mechanisms of induced systemic resistance (ISR) and systemicacquired resistance (SAR) against Colletotrichum orbiculareon the leaves of cucumber plants. Mycobiology 29:19-26.
  17. Jordan, N. J. and Holman, G. D. 1992. Photolabelling of liver-typeglucose-transporter isoform GLUT2 with an azitrifluoroethylbenzoyl-substituted bis-D-mannose. Biochem. J. 286:649-656. https://doi.org/10.1042/bj2860649
  18. Kern, M. and Pahlke, G., Balavenkatraman, K. K., Bohmer, F. D.and Marko, D. 2007. Apple polyphenols affect protein kinaseC activity and the onset of apoptosis in human colon carcinomacells. J. Agric. Food Chem. 55:4999-5006. https://doi.org/10.1021/jf063158x
  19. Kim, J.-C., Choi, G. J., Park, J.-H., Kim, H. T. and Cho, K. Y.2001. Activity against plant pathogenic fungi of phomalactoneisolated from Nigrospora sphaerica. Pest Manag. Sci. 57:554-559. https://doi.org/10.1002/ps.318
  20. Knekt, P., Jarvinen, R., Reunanen, A. and Maatela, J. 1996. Flavonoidintake and coronary mortality in Finland: a cohortstudy. Br. Med. J. 312:478-481. https://doi.org/10.1136/bmj.312.7029.478
  21. Krebitz, M., Wagner, B., Ferreira, F., Peterbauer, C., Campillo, N.,Witty, M., Kolarich, D., Steinkeller, H., Scheiner, O. andBreiteneder, H. 2003. Plant-based heterologous expression ofMal d 2, a thaumatin-like protein and allergen of apple (Malusdomestica), and its characterization as an antifungal protein. J.Mol. Biol. 329:721-730. https://doi.org/10.1016/S0022-2836(03)00403-0
  22. Lee, K. W., Kim, Y. J., Lee, H. J. and Lee, C. Y. 2003. Major phenolicsin apple and their contribution to the total antioxidantcapacity. J. Agri. Food Chem. 51:6516-6520. https://doi.org/10.1021/jf034475w
  23. Lee, K. W., Lee, S. J., Kang, N. J., Lee, C. Y. and Lee, H. J. 2004.Effects of phenolics in Empire apples on hydrogen peroxideinducedinhibition of gap-junctional intercellular communication.Biofactors 21:361-365. https://doi.org/10.1002/biof.552210169
  24. Le Marchand, L., Murphy, S. P., Hankin, J. H., Wilkens, L. R. andKolonel, L. N. 2000. Intake of flavonoids and lung cancer. J.Natl. Cancer Inst. 92:154-160. https://doi.org/10.1093/jnci/92.2.154
  25. Lin, Y. P., Hsu, F. L., Chen, C. S., Chern, J. W. and Lee, M. H.2007. Constituents from the Formosan apple reduce tyrosinaseactivity in human epidermal melanocytes. Phytochemistry 68:1189-1199. https://doi.org/10.1016/j.phytochem.2007.02.001
  26. Milling, R. J. and Richardson, C. J. 1995. Mode of action of theanilinopyrimidine fungicide pyrimethanil. 2. Effects on enzymesecretion in Botrytis cinerea. Pestic. Sci. 45:43-48. https://doi.org/10.1002/ps.2780450107
  27. Minami, H., Kim, J. R., Tada, K., Takahashi, F., Miyamoto, K.,Nakabou, Y., Sakai, K. and Hagihira, H. 1993. Inhibition ofglucose absorption by phlorizin affects intestinal functions inrats. Gastroenterology 105:692-697. https://doi.org/10.1016/0016-5085(93)90884-F
  28. Miura, I., Kamakura, T., Maeno, S., Hayashi, S. and Yamaguchi,I. 1994. Inhibition of enzyme secretion in plant pathogen bymepanipyrim, a novel fungicides. Pestic. Biochem. Physiol.36:303-324.
  29. Murphy, W. A. and Lumsden, R. D. 1984. Phloretin inhibition ofglucose transport by the tapeworm Hymenolepis diminuta: Akinetic analysis. Comp. Biochem. Physiol., Part A 78:749-754. https://doi.org/10.1016/0300-9629(84)90627-3
  30. Nakamura, Y., Watanabe, S., Miyake, N., Kohno, H., and Osawa,T. 2003. Dihydrochalcones: Evaluation as novel radical scavengingantioxidants. J. Agric. Food Chem. 51:3309-3312. https://doi.org/10.1021/jf0341060
  31. Nelson, J. A. and Falk, R. E. 1993. The efficacy of phloridzin andphloretin on tumor cell growth. Anticancer Res. 13:2287-2292.
  32. Pieterse, C. M. J., Van Wees, S. C. M., Van Pelt, J. A., Knoester,M., Laan, R., Gerritis, H., Weisbeek, P. J. and Van Loon, L. C.1998. A novel signaling pathway controlling induced systemicresistance in Arabidopsis. Plant Cell 10:1571-1080. https://doi.org/10.1105/tpc.10.9.1571
  33. Pontais, I, Treutter, D., Paulin, J.-P., and Brisset, M.-N. 2008.Erwinia amylovora modifies phenolic profiles of susceptibleand resistant apple through its type III secretion system. PhysiologiaPlantarum 132:262-271. https://doi.org/10.1111/j.1399-3054.2007.01004.x
  34. Salter, D. W., Custead-Jones, S. and Cook, J. S. 1978. Quercetininhibits hexose transport in a human diploid fibroblast. J.Membr. Biol. 40:67-76. https://doi.org/10.1007/BF01909739
  35. Shattock, R. C. 2002. Phytophthora infestans: populations, pathogenicityand phenylamides. Pest Manag. Sci. 58:944-950. https://doi.org/10.1002/ps.527
  36. Sticher, L., Mauch-Mani, B. and Metraux, J. P. 1997. Systemicacquired resistance. Annu. Rev. Phytopathol. 35:235-270. https://doi.org/10.1146/annurev.phyto.35.1.235
  37. Takagaki, M., Kaku, K., Watanabe, S., Kawai, K., Shimizu, T.,Sawada, H., Kumakura, K. and Nagayama, K. 2004. Mechanismof resistance to carpropamid in Magnaporthe grisea.Pest Manag. Sci. 60:921-926. https://doi.org/10.1002/ps.896
  38. Tsao, R., Yang, R., Young, J. C. and Zhu, H. 2003. Polyphenolicprofiles in eight apple cultivars using high-performance liquidchromatography (HPLC). J. Agric. Food Chem. 51:6347-6353. https://doi.org/10.1021/jf0346298
  39. Uesugi, Y. 1981. Resistance to fungicides in Pyricularia oryzae.J. Pestic. Sci. 6:239-246. https://doi.org/10.1584/jpestics.6.239
  40. Xing, N., Chen, Y., Mitchell, S. H., Young, C. Y. F. 2001. Quercetininhibits the expression and function of the androgen receptorin LNCaP prostate cancer cells. Carcinogenesis 22:409-414. https://doi.org/10.1093/carcin/22.3.409
  41. Yoon, H. and Liu, R. H. 2007. Effect of selected phytochemicalsand apple extracts on NF-kappaB activation in human breastcancer MCF-7 cells. J. Agri. Food Chem. 55:3167-3173. https://doi.org/10.1021/jf0632379

Cited by

  1. Histolocalization and physico-chemical characterization of dihydrochalcones: Insight into the role of apple major flavonoids vol.90, 2013, https://doi.org/10.1016/j.phytochem.2013.02.009
  2. Metabolic composition of apple rootstock rhizodeposits differs in a genotype-specific manner and affects growth of subsequent plantings vol.113, 2017, https://doi.org/10.1016/j.soilbio.2017.06.011
  3. Targeted Metabolic Profiling Indicates Apple Rootstock Genotype-Specific Differences in Primary and Secondary Metabolite Production and Validate Quantitative Contribution From Vegetative Growth vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01336