DOI QR코드

DOI QR Code

Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Hong, Yeon-Ju (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.06.16
  • Accepted : 2010.07.10
  • Published : 2010.09.20

Abstract

Pseudo-first-order rate constants ($k_{obsd}$) were measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl picolinate (6) with alkali metal ethoxides (EtOM, $M^+\;=\;K^+$, $Na^+$ and $Li^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOM] exhibits upward curvature regardless of the nature of $M^+$ ions. However, the plot for the reaction of 6 with EtOK is linear with significantly decreased $k_{obsd}$ values when 18-crown-6-ether (18C6, a complexing agent for $K^+$ ion) is added in the reaction medium. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that ion-paired EtOM is 3~17 times more reactive than dissociated $EtO^-$. The reaction has been proposed to proceed through a 5-membered cyclic transition state, in which $M^+$ ion increases the electrophilicity of the reaction site. Interestingly, $Na^+$ ion exhibits the largest catalytic effect. The presence of a nitrogen atom in the pyridine moiety of 6 has been suggested to be responsible for the high $Na^+$ ion selectivity.

Keywords

References

  1. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry; University Science Books: Sausalito, USA, 2006; pp 500-502.
  2. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, USA, 1998; p 445.
  3. Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms;Longman: Singapore, 1997; pp 179-183.
  4. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem.2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  5. Davies, A. G. Perkin 1 2000, 1997-2010.
  6. Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
  7. Pregel, M. J.; Dunn, E. J.; Nagelkerke,R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  8. Suh, J. Acc. Chem. Res. 1992, 25, 273-279. https://doi.org/10.1021/ar00019a001
  9. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  10. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  11. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
  12. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
  13. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett.1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  14. Liu, C. T.; Neverov, A. A.; Maxwell, C. I.; Brown, R. S. J. Am. Chem. Soc. 2010, 132, 3561-3573. https://doi.org/10.1021/ja910111q
  15. Edwards, D. R.; Tsang, W.Y.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem. 2010, 84,822-827.
  16. Brown, R. S.; Lu, Z, L.; Liu, C. T.; Tsang, W. Y.; Edwards,D. R.; Neverov, A. A. J. Phys. Org. Chem. 2010, 23, 1-15.
  17. Mohamed, M. F.; Neverov, A. A.; Brown, R. S. Inorg. Chem.2009, 48, 11425-11433. https://doi.org/10.1021/ic9015965
  18. Gibson, G. T. T.; Mohamed, M. F.; Neverov,A. A.; Brown, R. S. Inorg. Chem. 2006, 45, 7891-7902. https://doi.org/10.1021/ic060517x
  19. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C.-T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268-1276. https://doi.org/10.1139/v05-065
  20. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  21. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon, J. G. Chem. Commun.1984, 162-163.
  22. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon,G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/V08-178
  23. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475. https://doi.org/10.1039/b501537e
  24. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem.2004, 2, 601-610. https://doi.org/10.1039/b314886f
  25. Nagelkerke, R.; Thatcher, G. R. J.; Buncel,E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  26. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem.2003, 81, 53-63. https://doi.org/10.1139/v02-202
  27. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  28. Pregel, M. J.; Buncel, E. J. Org. Chem. 1991, 56, 5583-5588. https://doi.org/10.1021/jo00019a022
  29. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  30. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  31. Seo, J. A.; Kim, S. I.; Hong, Y. J.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 303-308. https://doi.org/10.5012/bkcs.2010.31.02.303
  32. Kwon, D. S.; Nahm, J. H.; Um, I. H. Bull. Korean Chem. Soc. 1994, 15, 654-658.
  33. Um, I. H.; Nahm, J. H.; Lee, Y. J.; Kwon, D. S. Bull. Korean Chem. Soc. 1994, 15, 654-658.
  34. Um, I. H.; Lee, S. E.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 1295-1296. https://doi.org/10.5012/bkcs.2008.29.7.1295
  35. Um, I. H.; Lee, S. E.; Hong, Y. J.; Park, J. E. Bull. Korean Chem. Soc. 2008, 29, 117-121. https://doi.org/10.5012/bkcs.2008.29.1.117
  36. Mentz, M.; Modro, A. M.; Modro, T. A. Can. J. Chem. 1994, 72, 1933-1936. https://doi.org/10.1139/v94-246
  37. Mentz, M.; Modro, T. A. J. Chem. Soc. Perkin Trans. 2 1995, 2227-2229.
  38. Albanese, D.; Landini, D.; Maia, A. J. Org. Chem. 2001, 66, 3249-3252. https://doi.org/10.1021/jo0056388
  39. Paola, G. T.; Idania, V. Z.; Olga, T.; Yatsimirsky, A. K. J. Org. Chem.2006, 71, 9713-9722. https://doi.org/10.1021/jo061780i
  40. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun.1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
  41. Barthel, J.; Justice, J-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113. https://doi.org/10.1524/zpch.1973.84.1-4.100
  42. Jones, R. A. Y. Physical and Mechanistic Organic Chemistry; Cambridge: Norwich, 1984; pp 265-287.
  43. Samuel, D.; Silver,B. L. Adv. Phys. Org. Chem. 1965, 87, 123-186.
  44. Johnson, S.L. Adv. Phys. Org. Chem. 1967, 5, 237-330. https://doi.org/10.1016/S0065-3160(08)60312-3
  45. McClelland, R. A.;Santry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  46. Um, I. K.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  47. Zhan, C. G.; Landry, D. W.; Ornstein R.L. J. Am. Chem. Soc. 2000, 122, 1522-1530. https://doi.org/10.1021/ja993311m
  48. Hori, K.; Hashitani,Y.; Kaku, Y.; Ohkubo, K. Theochem. 1999, 461-462, 589-596. https://doi.org/10.1016/S0166-1280(98)00473-4
  49. Kirsch, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33,127-132. https://doi.org/10.1021/jo01265a023

Cited by

  1. Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 4-Nitrophenyl Nicotinate and Isonicotinate with Alkali Metal Ethoxides in Anhydrous Ethanol vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1951
  2. A Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Alkali Metal Ethoxides: Metal Ion Effect and Reaction Mechanism vol.85, pp.9, 2012, https://doi.org/10.1246/bcsj.20120104
  3. Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3543
  4. Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Substitution Reactions of 3,4-Dinitrophenyl Diphenylphosphinothioate with Alkali Metal Ethoxides in Anhydrous Ethanol: Effect of Changing Elec vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2423
  5. K+ Ion Catalysis in Nucleophilic Displacement Reaction of Y-Substituted-Phenyl Picolinates with Potassium Ethoxide: Effect of Substituent Y on Reactivity and Transition State Structure vol.35, pp.6, 2010, https://doi.org/10.5012/bkcs.2014.35.6.1749
  6. Kinetic Study on Aminolysis of Y-Substituted-Phenyl Picolinates: Effect of H-Bonding Interaction on Reactivity and Transition-State Structure vol.35, pp.8, 2010, https://doi.org/10.5012/bkcs.2014.35.8.2410