DOI QR코드

DOI QR Code

Rearrangement of Benzyl-type Radical in Corona Discharge of 2,6-Dichlorotoluene

  • Yoon, Young-Wook (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Seung-Woon (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University) ;
  • Lee, Sang-Kuk (Department of Chemistry and The Chemistry Institute for Functional Materials, Pusan National University)
  • Received : 2010.06.03
  • Accepted : 2010.07.11
  • Published : 2010.09.20

Abstract

Using a pinhole-type glass nozzle equipped for a corona-excited supersonic expansion (CESE), precursor 2,6-dichlorotoluene seeded in a large amount of inert carrier gas helium was discharged to produce jet-cooled but electronically excited benzyl-type radicals. The visible vibronic emission spectrum was recorded with a long-path monochromator to observe vibronic bands in the $D_1{\rightarrow}D_0$ electronic transition of benzyl-type radicals. The spectral analysis revealed the generation of not only the 2,6-dichlorobenzyl radical as a typical product, but also the o-chlorobenzyl radical as an unexpected species, which indicates the possible molecular rearrangement in eliminating a chlorine atom from the benzene ring. A possible mechanism is proposed for the formation of the o-chlorobenzyl radical from the precurs or in the gas phase.

Keywords

References

  1. Carrington, A. Microwave Spectroscopy of Free Radicals; Academic: London, 1974.
  2. Tan, X. Q.; Wright, T. G.; Miller, T. A. Electronic Spectroscopy of Free Radicals in Supersonic Jets: Jet Spectroscopy and Molecular Dynamics; Hollas, J. M., Phillip, D., Eds.; Blackie Academic & Professional: London, 1994.
  3. Selco, J. I.; Carrick, P. G. J. Mol. Spectrosc. 1989, 137, 13. https://doi.org/10.1016/0022-2852(89)90264-6
  4. Lee, G. W.; Lee, S. K. Chem. Phys. Lett. 2009, 470, 54. https://doi.org/10.1016/j.cplett.2009.01.024
  5. Lee, G. W.; Lee, S. K. J. Phys. Chem. A 2007, 111, 6003. https://doi.org/10.1021/jp066488t
  6. Lee, G. W.; Lee, S. K. J. Chem. Phys. 2007, 126, 214308. https://doi.org/10.1063/1.2740629
  7. Ahn, H. G.; Lee, G. W.; Kim, T. K.; Lee, S. K. Bull. Korean Chem. Soc. 2008, 29, 2341. https://doi.org/10.5012/bkcs.2008.29.12.2341
  8. Ahn, H. G.; Lee, G. W.; Lee, S. K. J. Phys. Chem. A 2008, 112, 13427. https://doi.org/10.1021/jp8081134
  9. Lee, G. W.; Ahn, H. G.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2008, 465, 193. https://doi.org/10.1016/j.cplett.2008.10.008
  10. Ahn, H. G.; Lee, G. W.; Kim, T. K.; Lee, S. K. Chem. Phys. Lett. 2008, 454, 207. https://doi.org/10.1016/j.cplett.2008.02.044
  11. Bindley, T. F.; Watts, A. T.; Walker, S. Trans. Faraday Soc. 1964, 60, 1. https://doi.org/10.1039/tf9646000001
  12. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 301, 407. https://doi.org/10.1016/S0009-2614(98)01436-5
  13. Lee, S. K.; Baek, D. Y. J. Phys. Chem. A 2000, 104, 5219. https://doi.org/10.1021/jp9944684
  14. Lee, S. K.; Ahn, B. U. Chem. Phys. Lett. 2000, 321, 25. https://doi.org/10.1016/S0009-2614(00)00325-0
  15. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 311, 36. https://doi.org/10.1016/S0009-2614(99)00834-9
  16. Lee, S. K.; Baek, D. Y. Chem. Phys. Lett. 1999, 304, 39. https://doi.org/10.1016/S0009-2614(99)00294-8
  17. Lee, S. K.; Chae, S. Y. J. Phys. Chem. A 2001, 105, 5808. https://doi.org/10.1021/jp0045437
  18. Lee, S. K.; Chae, S. Y. J. Phys. Chem. A 2002, 106, 8054. https://doi.org/10.1021/jp020901p
  19. Fukushima, M.; Obi, K. Chem. Phys. Lett. 1996, 248, 269. https://doi.org/10.1016/0009-2614(95)01333-4
  20. Lee, S. K.; Kim, S. J. Chem. Phys. Lett. 2005, 412, 88. https://doi.org/10.1016/j.cplett.2005.06.016
  21. Lee, S. K. Chem. Phys. Lett. 2002, 358, 110. https://doi.org/10.1016/S0009-2614(02)00595-X
  22. Han, M. S.; Choi, I. S.; Lee, S. K. Bull. Korean Chem. Soc. 1996, 17, 991.
  23. Weise, M. L.; Smith, M. W.; Glennon, B. M. Atomic Transition Probabilities; NSRD -NBS4, 1966.
  24. Cossart-Magos, C.; Cossart, D. Mol. Phys. 1988, 65, 627. https://doi.org/10.1080/00268978800101291
  25. Banwell, C. N.; McCash, E. M. Fundamentals of Molecular Spectroscopy, 4th ed.; McGraw-Hill: London, 1994.
  26. Fujiwara, M.; Tanimoto, Y. J. Phys. Chem. 1994, 98, 5695. https://doi.org/10.1021/j100073a020
  27. Suh, M. H.; Lee, S. K.; Rehfuss, B. D.; Miller, T. A.; Bondybey, V. E. J. Phys. Chem. 1991, 95, 2727. https://doi.org/10.1021/j100160a021
  28. Atkins, P. W. Physical Chemistry, 6th ed.; Oxford University Press: Oxford, 1998.

Cited by

  1. Formation of Difluorobenzyl Radicals from 2,3,4-Trifluorotoluene in Corona Excitation vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1993
  2. Spectroscopic Identification of Isomeric Trimethylbenzyl Radicals Generated from 1,2,3,4-Tetramethylbenzene vol.32, pp.8, 2010, https://doi.org/10.5012/bkcs.2011.32.8.2751