References
- Thanassi, J. W. Biochemistry 1970, 9, 525. https://doi.org/10.1021/bi00805a011
- Knoop, F. Physiol. Chem. 1914, 89, 151. https://doi.org/10.1515/bchm2.1914.89.3.151
- Shimura, K.; Nagayama, H.; Kikuchi, A. Nature 1956, 177, 935.
- Thanassi, J. W.; Fruton, J. S. Biochemistry 1963, 1, 975. https://doi.org/10.1021/bi00912a006
- Thomas, N. R.; Rose, J. E.; Gani, D. J. Chem. Soc., Perkin Tran. 11993, 2933.
- Marckwald, W. Ber. Dtsch. Chem. Ges. 1904, 37, 349. https://doi.org/10.1002/cber.19040370165
- Marckwald, W. Ber. Dtsch. Chem. Ges. 1904, 37, 1368. https://doi.org/10.1002/cber.19040370226
- Kim, S. G.; Sambasivan, S.; Ahn, K. H. Bull. Korean Chem. Soc. 2010, 31, 724. https://doi.org/10.5012/bkcs.2010.31.03.724
- Hyun, M. H.; Kim, S. N.; Choi, H. J.; Sakthivel, P. Bull. Korean Chem. Soc. 2007, 28, 1419. https://doi.org/10.5012/bkcs.2007.28.8.1419
- Amere, M.; Lasne, M.-C.; Rouden, J. Org. Lett. 2007, 9, 2621. https://doi.org/10.1021/ol070712v
- Brunner, H.; Baur, M. A. Eur. J. Org. Chem. 2003, 2854.
- Yashiro, M.; Miura, S.; Matsuyama, T.; Yoshikawa, S.; Komiyama,M.; Yano, S. Inorg. Chem. 1994, 33, 1003. https://doi.org/10.1021/ic00084a004
- Toussaint, O.; Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1987, 28, 539. https://doi.org/10.1016/S0040-4039(00)95776-9
- Goodwin, T. J.; Mulqi, M. W.; Williams, P. A. Inorg. Chim. Acta1985, 98, 141. https://doi.org/10.1016/S0020-1693(00)87596-9
- Ajioka, M.; Yano, S.; Matsuda, K.; Yoshikawa,S. J. Am. Chem. Soc. 1981, 103, 2459. https://doi.org/10.1021/ja00399a075
- Glusker, J. P.; Carrell, H. L.; Job, R.; Bruice, T. C. J. Am. Chem. Soc. 1974, 96, 5741. https://doi.org/10.1021/ja00825a010
- Callahan, B. P.; Wolfenden, R. J. Am. Chem. Soc. 2004, 126, 4514. https://doi.org/10.1021/ja031720j
- Thanassi, J. W. Biochemistry 1972, 11, 2909. https://doi.org/10.1021/bi00765a026
- Park, H.; Kim, K. M.; Lee, A.; Ham, S.; Nam, W.; Chin, J. J. Am. Chem. Soc. 2007, 129, 1518. https://doi.org/10.1021/ja067724g
- Kim, K. M.; Park, H.; Kim, H. J.; Chin, J.; Nam, W. Org. Lett. 2005, 7, 3525. https://doi.org/10.1021/ol051267b
- Sun, S.; Zabinski, R. F.; Toney, M. D. Biochemistry 1998, 37,3865. https://doi.org/10.1021/bi972055s
- Bailey, G. B.; Chotamangsa, O.; Vuttivej, K. Biochemistry1970, 9, 3243. https://doi.org/10.1021/bi00818a018
- Filer, C. N.; Lacy, J. M.; Peng, C. T. Syn. Commun. 2005, 35, 967. https://doi.org/10.1081/SCC-200051704
- Liauger, L.; Cosa, G.; Scaiano, J. C. J. Am. Chem. Soc.2002, 124, 15308. https://doi.org/10.1021/ja027624k
- Hunter, D. H.; Hamity, M.; Patel, V.; Perry, R. A. Can. J. Chem. 1978, 56, 104. https://doi.org/10.1139/v78-017
- Molecular mechanics computation was performed using Spartan '02 Windows from Wavefunction, Inc.
Cited by
- ChemInform Abstract: Enantioselective Decarboxylation of 2-Methyl-2-aminomalonate Catalyzed by (S)-2-Hydroxy-2′- (3-phenyluryl-benzyl)-1,1′-binaphthyl-3-carboxaldehyde. vol.42, pp.8, 2011, https://doi.org/10.1002/chin.201108198
- Ultrasound-Promoted Enantioselective Decarboxylative Protonation of α-Aminomalonate Hemiesters by Chiral Squaramides: A Practical Approach to Both Enantiomers of α-Amino Esters vol.2017, pp.31, 2017, https://doi.org/10.1002/ejoc.201700786