연속식 전해정련에 의한 우라늄 회수기술 개발

The Development of U-recovery by Continuous Electrorefining

  • 투고 : 2009.12.23
  • 심사 : 2010.03.05
  • 발행 : 2010.03.30

초록

사용후핵연료로부터 유용한 물질을 회수하는 파이로 공정의 주요 공정 중 하나인 전해정련 기술과 국내의 전해정련 장치 개발에 대해 고찰하였다. 전해정련 반응은 LiCl-KCl 용융염 전해질 내에 우라늄과 초우란금속 및 희토류 등을 함유하는 사용후핵연료 금속전환체를 담은 양극 바스켓과 고체음극으로 구성되고, 양극에서 는 산화(용해)반응이 음극에서는 환원(석출)반응이 진행되며 순수한 우라늄만을 회수한다. 흑연음극이 가진 자발탈리하는 특성과 아래로 모아진 우라늄 석출물을 스크류 이송장치로 자동 회수하는 개념을 도입하여 처리용량이 20 kgU/day 규모의 연속식 고성능 전해정련장치를 개발하였다.

The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, and the domestic development of electrorefiner have been reviewed. The electrorefiner is composed of an anode basket containing reduced spent fuel such as uranium, transuranic and rare earth elements, and a solid cathode, which are in LiCl-KCl eutectic electrolyte. Oxidation (dissolution) reaction occurs on the anode and a pure uranium is electrochemically reduced (deposited) on the solid cathode. By application of graphite cathode, which has a self-scrapping characteristics for the uranium deposits, and a recovery of the fallen deposits by a screw conveyer, a high-throughput continuous electrorefiner with a capacity of 20 kgU/day has been developed.

키워드

참고문헌

  1. L. Burris, R. Steunenberg, and W. E. Miller, "The Application of Electrorefining for Recovery and Purification of Fuel Discharged from the Integral Fast Reactor," AIChE Symposium Series, 83 (253) pp. 135-142 (1987).
  2. Y. I. Chang, "The Integral Fast Reactor," Nucl. Technol., 88 (11), pp. 129-138 (1989). https://doi.org/10.13182/NT88-129
  3. R. K. Ahluwalia, T. Q. Hua, and D. Vaden, "Uranium Transport in a High-Throughput Electrorefiner for EBR-II Blanket Fuel," Nucl. Technol. 145, pp. 67-81 (2004). https://doi.org/10.13182/NT04-A3461
  4. S. X. Li, T. A. Johnson, B. R. Westphal, K. M. Goff, and R. W. Benedict, "Electrorefining Experience for Pyrochemical Processing of Spent EBR-II Driver Fuel," Proc. Global 2005, Tsukuba, Japan, Paper 487, Atomic Energy Society of Japan (2005).
  5. M. Simpson, "Electrochemical Spent Fuel Processing Short Course," Idaho National Laboratory Seminar Presentation, 2008. May 05, (2008).
  6. D. Lewis, D. Graziano, J. F. Miller, and G. Vandegrft, Chemical Engineering Division Annual Technical Report, ANL-04/06, Argonne National Laboratory (2004).
  7. Y. H. Kang, J. H. Lee, S. C. Hwang. J. B. Shim, E. H. Kim, and S. W. Park, "Electrodeposition Characteristics of Uranium by Using a Graphite Cathode," Carbon, 44, pp. 3142-3145 (2006). https://doi.org/10.1016/j.carbon.2006.05.026
  8. 강영호, 이종현, 황성찬, 심준보, 김응호, "흑연 전극을 이용한 우라늄 전해정련 특성," 방사성폐기물학회지, 5(1), pp. 1-7 (2007).
  9. J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim, and S. W. Park, "Application of Graphite As a Cathode Material for Electrorefining of Uranium," Nucl. Technol., 162, pp. 135-143(2008). https://doi.org/10.13182/NT08-A3940
  10. J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, H. S. Lee, J. B. Shim, E. H. Kim, and S. W. Park, "Assessment of a High-Throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel - II: Electrorehydrodynamic Analysis and Validation," Nucl. Technol., 165, pp. 370-379 (2008).
  11. 유재형, 이병직, 이한수, 김응호, "고온전해분리 기술의 개요 및 기존 핵연료주기 대체 기술로서의 적합성 검토," 방사성폐기물학회지, 5(4), pp. 283-295 (2007).
  12. 강영호, 양영석, 국일현, " 용융염 전해법에 의한 핵연료 Sludge처리,", J. Korean Nuclear Society, 29(6), pp. 60-63 (1997).
  13. 강영호, 황성찬, 심준보, 유재형, "불화물/염화물 용융염을 이용한 우라늄금속의 전해정련에 관한 연구," J. Korean Ind. Eng. Chem., 13(1), pp. 29-32 (2002).
  14. 양영석, 강영호, 황성찬, "저 탄소강 음극을 사용한 금속우라늄의 용융염 전해정련에 관한 연구," J. Korean Ind. Eng. Chem., 10(8). pp. 1119-1123 (1999).
  15. 강영호, 황성찬, 안병길, 김응호, 유재형, "용융염 전해정련에서 전류밀도변화에 따른 우라늄 금속의 석출특성," J. Korean Ind. Eng. Chem., 15(5), pp. 513-517 (2004).
  16. 강영호, 황성찬, 안병길, 김응호, 유재형, "용융염 전해정련에서 석물물의 형태에 대한 전류밀도의 영향," J. Korean Ind. Eng. Chem., 15(6), pp. 686-688 (2004).
  17. J. H. Lee, Y. H. Kang, S. C. Hwang, E. H. Kim, and J. H Yoo, "The Effect of Processing Parameters on the Deposition Behavior of a Spent Fuel Surrogate in the Molten Salt Electrorefining: Proc. of the Korean Radioactive Waste Society, 2(1), pp. 319-329 (2004).
  18. J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, B. G. Ahn, E. H. Kim, and S. W. Park, "Electrode position Characteristics of Uranium in Molten LiCl-KCl Eutectic and its Salt Distillation Behavior," J. Nuclear Science and Technology, 43(3), pp. 263-269 (2006). https://doi.org/10.3327/jnst.43.263
  19. J. H. Lee, Y. H. Kang, S. C. Hwang, H. S. Lee, E. H. Kim, and S. W. Park, "Assessment of a High-Throughput Electrorefining Concept for a Spent Metallic Nuclear Fuel - I: Computational Fluid Dynamics Analysis," Nucl. Technol., 162, pp. 107-116 (2008). https://doi.org/10.13182/NT08-A3936
  20. J. G. Kim, J. H. Lee, K. H. Oh, Y. H. Kang, S. C. Hwang, S. B. Park, J. B Shim, and H. S. Leek, "Operation Results from a High Throughput Electrorefiner fro a Spent Metallic Nuclear Fuel," Proc. of Global 2009, Paris, France, Sep. 6-11, 2009, Paper 9160 (2009).