DOI QR코드

DOI QR Code

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction

GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정

  • Lee, Jae-Hee (Department of Geophysics, Kangwon National University) ;
  • Lee, Hoon-Yol (Department of Geophysics, Kangwon National University) ;
  • Cho, Seong-Jun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Sung, Nak-Hun (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Jung-Ho (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이재희 (강원대학교 지구물리학과) ;
  • 이훈열 (강원대학교 지구물리학과) ;
  • 조성준 (한국지질자원연구원 광물자원연구본부) ;
  • 성낙훈 (한국지질자원연구원 광물자원연구본부) ;
  • 김정호 (한국지질자원연구원 광물자원연구본부)
  • Received : 2010.04.13
  • Accepted : 2010.04.20
  • Published : 2010.04.30

Abstract

In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

이 논문에서는 지상용 SAR (GB-SAR) 시스템의 간섭기법을 이용하여 특정 산란체의 인위적 변위를 탐지하고 대기습도보정을 통하여 정확도를 향상시켰다. GB-SAR 자료는 중심주파수 5.3 GHz, 거리 해상도 25 cm, 방위해상도 $0.324^{\circ}$로 모든 편파(HH, VV, VH, HV)에 대해 얻어졌다. 삼각삼면반사체(triangular trihedral corner reflector)를 시스템 전방 160 m 지점에 위치시킨 후 인위적으로 0 - 40 mm의 변위를 주어 측정하였다. 그 결과, 모든 편파에서 실제 변위와 GB-SAR 시스템을 통한 측정 변위의 RMS 오차는 1.22 mm로 나타났으며, 실제변위 40 mm 일 때의 최대 측정오차는 HH편파에서 2.72 mm로 나타났다. 대기 중 습도에 대한 보정을 실시하였고 그 결과, RMS 오차는 0.52 mm로 줄어들었다. 이를 통해 GB-SAR 시스템은 밀리미터 이하의 정밀도가 요구되는 자연산란체나 인공구조물의 변위측정 및 안정성 평가 분야에 적용이 가능할 것으로 판단된다.

Keywords

References

  1. 이훈열, 2006. SAR 관련 논문 통계 분석에 의한 SAR 시스템, 기술, 활용분야 고찰, 대한원격탐사학회지, 22(2): 153-174. https://doi.org/10.7780/kjrs.2006.22.2.153
  2. 이훈열, 조성준, 성낙훈, 김정호, 2007a. GB-SAR의 개발(I): 시스템 구성과 간섭기법, 대한원격탐사학회지, 23(4): 237-245. https://doi.org/10.7780/kjrs.2007.23.4.237
  3. 이훈열, 조성준, 성낙훈, 김정호, 2007b. GB-SAR의 개 발(II): 영상화 기법, 대한원격탐사학회지, 23(4): 247-256. https://doi.org/10.7780/kjrs.2007.23.4.247
  4. 기상청, 지상관측자료-지역별상세관측자료(AWS), 대전, 온라인 http://203.247.66.10/weather/ observation/aws_table_popup.jsp (accessed 07 April. 2010).
  5. Abellan, A., Vilaplana, J.M., Martinez, J., 2006. Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Nuria(Eastern Pyrenees, Spain). Engineering geology, Vol.88(3-4), 136-148. https://doi.org/10.1016/j.enggeo.2006.09.012
  6. Casagli, N., P. Farina, D. Leva, G. Nico, and D. Tarchi, 2003. Ground-Based SAR interferometry as a tool for landslide monitoring during emergencies. 2003 IGARSS, Toulouse, France, 21- 25 July, 2003. Vol.4, 2924-2926.
  7. Lee, J. J and M. Shinozuka, 2006. A vision-based system for remote sensing of bridge displacement, NDT&E International, 39(5): 425- 431. https://doi.org/10.1016/j.ndteint.2005.12.003
  8. LI, H. N., D. S. Li, and G. B. Song, 2004. Recent application of fiber optic sensors to health monitoring in civil engineering, Engineering Structures, 26(11):1647-1657. https://doi.org/10.1016/j.engstruct.2004.05.018
  9. Leva, D., G. Nico, D. Tarchi, J. F. Guasch, and J. Sieber, 2003. Temporal analysis of a Ground- Based SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 41(4): 745- 752. https://doi.org/10.1109/TGRS.2003.808902
  10. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Guidi, F. Moia, and C. Atzeni, 2004. Ground- Based Radar interferometry for landslides monitoring: Atmospheric and instrumental decorrelation sources on experimental data, IEEE Transactions on Geoscience and Remote Sensing, 42(11): 2454-2466. https://doi.org/10.1109/TGRS.2004.836792
  11. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Tamburini and C. Atzeni 2007. Monitoring of an Alpine glacier by means of Ground-Based SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 4(3): 495-499. https://doi.org/10.1109/LGRS.2007.898282
  12. Monserrat, O. and Crosetto, M., 2008. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1), 142-154. https://doi.org/10.1016/j.isprsjprs.2007.07.008
  13. Nickitopoulou, A., K. Protopsalti, and S. Stiros, 2006. Monitoring dynamic and quasi-static deformations of large flexble engineering structures with GPS: Accuracy, limitations and promises, Engineering Structure, 28(10): 1471-1482. https://doi.org/10.1016/j.engstruct.2006.02.001
  14. Noferini, L., M. Pieraccini, D. Mecatti, G. Luzi, C. Atzeni, A. Tamburini, and M. Broccolato, 2005. Permanent Scatterers analysis for atmospheric correction in Ground-Based SAR interferometry, IEEE Transactions on Geoscience and Remote Sensing, 43(7): 1459-1471. https://doi.org/10.1109/TGRS.2005.848707
  15. Noferini, L., M. Pieraccini, D. Mecatti, G. Macaluso, C. Atzeni, M. Mantovani, G. Marcato, A. Pasuto, S. Silvano and F. Tagliavini, 2007. Using GB-SAR technique to monitor show moving landslide, Engineering Geology, 95(3-4): 88-98. https://doi.org/10.1016/j.enggeo.2007.09.002
  16. Pieraccini, M., D. Mecatti, L. Noferini, G. Luzi, G. Franchioni, and C. Atzeni, 2002. SAR interferometry for detecting the effects of earthquakes on buildings, NDT&E International, 35(2002): 615-625. https://doi.org/10.1016/S0963-8695(02)00047-6
  17. Pipia, L., X. Fabregas, A. Aguasca, and C. L. Martinez, 2008. Atmospheric artifact compensation in Ground-Based DInSAR application, IEEE Transactions on Geoscience and Remote Sensing, 5(1): 88-92. https://doi.org/10.1109/LGRS.2007.908364
  18. Tamura, Y., M. Matsui, L. C. Pagnini, R. Ishibashi, and A. Yoshida, 2002. Measurement of windinduced response of buildings using RTKGPS, Journal of Wind Engineering and Industrial Aerodynamics, 90(12-15): 1783-1793. https://doi.org/10.1016/S0167-6105(02)00287-8
  19. Tarchi, D., H. Rudolf, G. Luzi, L. Chiarantini, P. Coppo, and A.J. Sieber, 1999. SAR interferometry for structural changes detection: A demonstration test on a dam, 1999 IGARSS, Hamburg, Germany, 28 June-2 July, 1999. Vol.4, 1522-1524.
  20. Tarchi, D., N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003. Landslide monitoring by using Ground-Based SAR interferometry: an example of application to the Tessina landslide in Italy, Engineering Geology, 68(1-2): 15-30. https://doi.org/10.1016/S0013-7952(02)00196-5