DOI QR코드

DOI QR Code

Analysis of the CATR Equipped with the Novel Shark-Fin Shaped Serrations by the Height Modulation

높이가 다른 Shark-Fin 형태의 서레이션을 갖는 CATR의 특성 해석

  • Choi, Dong-Won (Department of Electronics & Electrical Engineering, Dankook University) ;
  • Choi, Hak-Keun (Department of Electronics Engineering, Dankook University) ;
  • Park, Jae-Hyun (Department of Electronics & Electrical Engineering, Dankook University) ;
  • Lim, Seong-Bin (Korea Aerospace Research Institute)
  • 최동원 (단국대학교 전자전기공학과) ;
  • 최학근 (단국대학교 전자공학과) ;
  • 박재현 (단국대학교 전자전기공학과) ;
  • 임성빈 (한국항공우주연구원)
  • Published : 2010.04.30

Abstract

The CATR(Compact Antenna Test Range) is a testing facility which is to provide the uniform plane wave by using the reflector. As the ripple of the uniform plane wave caused by the diffraction rays at the edge of the reflector, serrations are attached at the edge of the reflector to minimize the ripple of the uniform plane wave in the CATR. The diffraction field of the serration is normally analyzed by the Fresnel diffraction formula which is expressed as the double integration, and the structure of the serration is expressed as Fourier series to apply the double integration of the Fresnel diffraction formula. In this paper, the novel shark-fin shaped serrations which have the height modulation of the adjacent serrations are proposed. And the triangular serrations and the novel shark-fin shaped serrations are compared to confirm that the performance of the quiet zone by the shark-fin shaped serrations is better than by the triangular serrations. It is also confirmed that the novel shark-fin shaped serrations which have the height modulation of the adjacent serrations are lower ripple than which have the same height of the adjacent serrations. Accordingly, the novel shark-fin shaped serrations with the height modulation can be used at the edge of the reflector to provide the uniform plane wave in CATR.

CATR(Compact Antenna Test Range)은 실내에서 반사판을 사용하여 균일 평면파를 제공하는 시험 시설이다. 반사판의 가장자리에서 발생되는 회절 전계는 균일 평면파의 리플(ripple)을 증가시키는 요인이 되기 때문에 CATR에서는 서레이션(serration)을 반사판의 가장자리에 부착하여 균일 평면파의 리플을 낮추게 된다. 일반적으로 서레이션의 회절 전계는 이중 적분으로 표현되는 프레넬 회절식(Fresnel diffraction formula)을 사용하여 해석하고, 서레이션 구조는 프레넬 회절식의 이중 적분 영역에 적용시키기 위해 푸리에 급수로 표현한다. 본 논문에서 는 새로운 shark-fin 형태를 갖는 서레이션을 사용하였고, 제안된 서레이션에 인접한 서레이션의 높이에 차이를 주는 구조를 제안하였다. 기존 삼각형 구조의 서레이션과 새로운 shark-fin 구조의 서레이션을 비교하여 제안한 shark-fin 구조의 서레이션에서 quiet zone의 크기를 보다 넓힐 수 있음을 확인하였고, 인접 서레이션의 높이에 변화를 주었을 때 동일한 높이보다 리플이 낮아짐을 확인하였다. 따라서 본 논문에서 제안한 shark-fin 형태의 높이가 다른 서레이션 구조는 CATR의 시험 영역에 리플이 낮은 균일 평면파를 제공할 수 있을 것으로 생각된다.

Keywords

References

  1. W. H. Kummer, E. S. Gillespie, "Antenna measurements-1978", Proc. IEEE, vol. 66, no. 4, pp. 483-507, Apr. 1978. https://doi.org/10.1109/PROC.1978.10940
  2. R. C. Johnson, H. A. Ecker, and J. S. Hollis, "Determination of far-field antenna patterns from nearfield measurements", Proc. IEEE, vol. 61, no. 12, pp. 1668-1694, Dec. 1973. https://doi.org/10.1109/PROC.1973.9358
  3. T. H. Lee, W. D. Burnside, "Performance trade-off between serrated edge and blended rolled edge compact range reflectors", IEEE Trans. Antennas Propagat., vol. 44, no. 1, pp. 87-96, Jan. 1996. https://doi.org/10.1109/8.477532
  4. S. W. Ellingson, I. J. Gupta, and W. D. Burnside, "Analysis of blended rolled edge reflectors using numerical UTD", IEEE Trans. Antennas and Propagation, vol. 38, no. 12, pp. 1969-1971, Dec. 1990. https://doi.org/10.1109/8.60989
  5. Y. R. Samii, "A comparison between GO/aperturefield and physical-optics methods for offset reflectors", IEEE. Antennas and Prop., vol. AP-32, no. 3, Mar. 1984. https://doi.org/10.1109/TAP.1984.1143300
  6. T. V. R. Krishna, P. Siddaiah, and B. P. Rao, "Performance analysis of CATR reflector with segmented triangular serrated edges", IET-UK International Conference on ICTES 2007, pp. 991-995, Dec. 2007.
  7. P. Siddaiah, P. V. Subbaiah, "Performance of compact antenna test range reflectors employing width and height modulated triangular serrations", Journal of the Institution of Engineers-ET, vol. 84, pp. 38-41, Jul. 2003.
  8. P. A. Beeckman, "Prediction of the fresnel region field of a compact antenna test range with serrated edges", IEE Proc., vol. 133, no. 2, pp. 108-114, Apr. 1986.
  9. T. V. R. Krishna, P. Siddaiah, and B. P. Rao "Viability of convex-modulated exponential serrations for improved performance of CATRs", Progress In Electromagnetics Research Symposium, pp. 2221-2224, Mar. 2007.
  10. T. V. R. Krishna, P. Siddaiah, and B. P. Rao, "Performance analysis of CATR reflector with super hybrid modulated segmented exponential serrated edges", International Journal of Electrical, Computer, and Systems Engineering, vol. 1, no. 3, pp. 177-182, 2007.
  11. T. V. R. Krishna, P. Siddaiah, and B. P. Rao, "Performance comparison between nonidentical segmented exponential concave and nonidentical segmented exponential convex serrated CATRs", International Journal of Antennas and Propagation, vol. 2008, Article ID. 756060, p. 6, 2008.
  12. J. Hartmann, D. Fasold, "Improvement of compact range by design of optimized serrations", Proc. AP2000 Millennium Conference on Antennas & Propagation, Davos, Switzerland, 2000.
  13. C. G. Parini, M. Philippakis, "Use of quiet zone prediction in the design of compact antenna test ranges", Proc. IEE Microwaves, Antennas & Propagation, vol. 143, no. 3, pp. 193-199, Jun. 1996. https://doi.org/10.1049/ip-map:19960233
  14. http://www.aero-microwave.com, "2004 Satellite Antenna Testing"
  15. http://www.elec.qmul.ac.uk/research/projects/tri-reflector_catr.html