DOI QR코드

DOI QR Code

Volume Mesh Parameterization for Topological Solid Sphere Models

구형 위상구조 모델에 대한 볼륨메쉬 파라메터화

  • Received : 2010.03.25
  • Accepted : 2010.04.13
  • Published : 2010.04.28

Abstract

Mesh parameterization is the process of finding one-to-one mapping between an input mesh and a parametric domain. It has been considered as a fundamental tool for digital geometric processing which is required to develop several applications of digital geometries. In this paper, we propose a novel 3D volume parameterization by means that a harmonic mapping is established between a 3D volume mesh and a unit solid cube. To do that, we firstly partition the boundary of the given 3D volume mesh into the six different rectangular patches whose adjacencies are topologically identical to those of a surface cube. Based on the partitioning result, we compute the boundary condition as a precondition for computing a volume mesh parameterization. Finally, the volume mesh parameterization with a low-distortion can be accomplished by performing a harmonic mapping, which minimizes the harmonic energy, with satisfying the boundary condition. Experimental results show that our method is efficient enough to compute 3D volume mesh parameterization for several models, each of whose topology is identical to a solid sphere.

메쉬 파라메터화는 입력으로 들어온 메쉬와 파라메터 영역 사이의 부드러운 일대일 대응함수를 구하는 것으로, 삼차원 스캐너를 통해 획득한 디지털 형상을 여러 가지 응용문제에 활용하기 위해 필요한 디지털 형상 처리의 핵심기반기술이다. 본 논문에서는 구형 위상구조를 가지는 삼차원 물체에 대해, 표면뿐만 아니라 내부를 포함한 물체 전체를 단일 입방정육면체로 하모닉 매핑하는 새로운 삼차원 볼륨파라메터화 방법을 제안한다. 제안하는 방법은 입력으로 들어온 볼륨메쉬의 표면을 정육면체와 동일한 위상구조를 가지는 여섯 개의 영역으로 나누고, 이를 이용하여 볼륨 파라메터화의 경계조건을 계산한다. 이후 경계조건을 만족하며 볼륨 내부의 하모닉 에너지를 최소화하는 하모닉 매핑을 계산하여 물체 내부까지 왜곡이 적은 삼차원 파라메터화 결과를 얻어낸다. 실험결과를 통해, 본 논문에서 제안하는 방법을 통해 다양한 구형 삼차원 모델에 대해 삼차원 볼륨파라메터화 결과를 효과적으로 얻을 수 있음을 확인하였다.

Keywords

References

  1. B. Levy, S. Petitjean, N. Ray, and J. Maillot, "Least Squares Conformal Maps for Automatic Texture Atlas Generation," Proc. ACM SIGGRAPH '02, pp.362-371, 2002. https://doi.org/10.1145/566570.566590
  2. M. S. Floater and K. Hormann, "Surface Parameterization: A Tutorial and Survey," Advances in Multiresolution for Geometric Modelling, pp.157-186, 2005.
  3. M. Desbrun, M. Meyer, and P. Alliez, "Intrinsic Parameterizations of Surface Meshes," Computer Graphics Forum (Proc. Eurographics '02), Vol.21, No.3, pp.209-218, 2002. https://doi.org/10.1111/1467-8659.00580
  4. X. Gu and S.-T. Yau, "Global Conformal Parameterization," Proc. Symp. Geometry Processing, pp.127-137, 2003.
  5. T. Martin, E. Cohen, and M. Kirby, "Volumetric Parameterization and Trivariate B-Spline Fitting using Harmonic Functions," Proc. ACM Symp. Solid and Physical Modeling, pp.269-280, 2008. https://doi.org/10.1145/1364901.1364938
  6. P. Schroder and W. Sweldens, "Digital Geometry Processing,"SIGGRAPH 2001 Course Notes, 2001.
  7. F. Labelle and J. R. Shewchuk, "Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles," ACM Trans. Graphics, Vol.26, No.3, article Vo.57, 2007. https://doi.org/10.1145/1276377.1276448
  8. K. Takayama, M. Okabe, T. Ijiri, and T. Igarashi, "Lapped Solid Textures: Filling a Model with Anisotropic Textures," ACM Trans. Graphics, Vol.27, No.3, article No.53, 2008. https://doi.org/10.1145/1399504.1360652
  9. J. Tournois, C. Wormser, P. Alliez, and M. Desbrun, "Interleaving Delaunay Refinement and Optimization," ACM Trans. Graphics, Vol.28, No.3, article No.75, 2009. https://doi.org/10.1145/1531326.1531381
  10. M. Jin, J. Kim, F. Luo, and X. Gu, "Discrete Surface Ricci Flow," IEEE Trans. Visualization and Computer Graphics, Vol.14, No.5, pp.1030-1043, 2008. https://doi.org/10.1109/TVCG.2008.57
  11. X. Li, X. Guo, H. Wang, Y. He, X. Gu, and H. Qin, "Harmonic Volumetric Mapping for Solid Modeling Applications," Proc. ACM Symp. Solid and Physical Modeling, pp.109-120, 2007. https://doi.org/10.1145/1236246.1236263
  12. C. Gotsman, X. Gu, and A. Sheffer, "Fundamentals of Spherical Parameterization for 3D Meshes," ACM Trans. Graphics, Vol. 22, No.3, pp.358-363, 2003. https://doi.org/10.1145/882262.882276
  13. M. Reuter, F-E. Wolter, and N. Peinecke, "Laplace-Beltrami Spectra as "ShapeDNA" of Surfaces and Solids," Computer-Aided Design Vol.38, No.4, pp.342-366, 2006. https://doi.org/10.1016/j.cad.2005.10.011