DOI QR코드

DOI QR Code

Small Area Estimation to Unemployment Statistics in Korea

시군 실업통계 작성을 위한 소지역 추정모형

  • Kim, Jin (Sampling Division, Statistics Korea) ;
  • Kim, Jae-Kwang (Deparatment of Statistics, Iowa State University)
  • 김진 (통계청 표본과) ;
  • 김재광 (아이오와주립대학교 통계학과)
  • Received : 20100100
  • Accepted : 20100400
  • Published : 2010.05.31

Abstract

Most sample surveys are designed to estimate reliable statistics for the whole population and for some large subpopulations. However, the research for small area estimation have been increasing in recent years because users demand to reliable estimates for smaller subpopulations like small areas or specific domains. In Korea, the Economically Active Population Survey(EAPS) is the main household survey that produces monthly unemployment rates for nationwide and 16 large areas (7 metropolitans and 9 provinces) in Korea. For county level estimation, direct estimators are not reliable because of the small sample sizes. We consider small area estimation of the county level unemployment ratesfrom the sample observations in EAPS. To do this, we use an area level model to "borrow strength" from the auxiliary information, such as administrative data and census data. The proposed method is based on the assumption of normality of the model errors in the area level model. The proposed method is compared with the other alternatives in terms of the estimated mean squared errors.

대부분의 통계조사는 전국 및 시도단위와 같은 전체 또는 규모가 큰 지역을 위한 통계작성이 가능하도록 설계되어 있다. 그러나 최근들어 소규모 지역의 신뢰있는 통계결과에 대한 통계 이용자들의 요구가 점점 증가하고 있다. 경제활동인구조사는 전국 및 16개 시도를 위한 실업률을 매월 작성하고 있으나, 시군별 직접추정량은 적은 표본규모 때문에 신뢰도가 낮다. 본 연구에서는 경제활동인구조사에서 제공되는 실업자수에 대한 통계를 시군별로 작성하기 위한 모형을 제시한다. 이를 위해 보조정보로부터 "정보를 빌려오는(borrow strength)" 지역단위모형(Area level model)을 사용하였다. 제안된 모형 기반 추정(Model-based Estimation)은 모형 오차의 정규성 가정을 기반으로 하고 있으며, 평균제곱오차 측면에서 제안된 모형들을 비교하였다.

Keywords

References

  1. 이계오 (2000). 시군구 실업자 추정을 위한 소지역 추정법, <응용통계연구>, 13, 275-286.
  2. 이상은 (2001). Bayes prediction for small area estimation, <한국통계학회논문집>, 8, 407-416.
  3. 이상은 (2006). 공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계, <응용통계연구>, 19, 421-430. https://doi.org/10.5351/KJAS.2006.19.3.421
  4. 정연수, 이계오, 이우일 (2003). 시군구 실업자 총계 추정을 위한 설계기반 간접추정법, <응용통계연구>, 16, 1-14. https://doi.org/10.5351/KJAS.2003.16.1.001
  5. 통계청 (2002). <소지역통계 추정법>, Unpubliched Report.
  6. 통계청 (2004). <모형기반 소지역추정방법>, Unpubliched Report.
  7. Battese, G. F., Harter, R. M. and Fuller, W. A. (1988). An error component model for prediction of county crop area using survey and satellite data, Journal of American Statistical Association, 83, 28-36. https://doi.org/10.2307/2288915
  8. Chung, Y. S., Lee, K.-O. and Kim, B. C. (2003). Adjustment of unemployment estimates based on small area estimation in Korea, Survey Methodology, 29, 45-52.
  9. Fay, R. E. and Harriot, R. A. (1979). Estimation of income of small places: An application of James-Stein procedures to census data, Journal of the American Statistical Association, 74, 269-271. https://doi.org/10.2307/2286322
  10. Gonzalez-Manteiga, W., Lombardia, M. J., Molina, I., Morales, D. and Santa-Maria, L. (2006). Bootstrap mean squared error of a small-area EBLUP, Journal of Statistical Computation and Simulation, 78, 443-462. https://doi.org/10.1080/00949650601141811
  11. Hall, P. and Maiti, T. (2006). Nonparametric estimation of mean squared prediction error in nested-error regression models, Annals of Statistics, 34, 1733-1750. https://doi.org/10.1214/009053606000000579
  12. Jiang, J., Lahiri, P. and Wan, S. M. (2002). A unified Jackknife theory for empirical best prediction with M-estimation, Annals of Statistics, 30, 1782-1810. https://doi.org/10.1214/aos/1043351257
  13. Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008). Non-parametric small area estimation using penalized spline regression, Journal of the Royal Statistical Society B, 70, 265-286. https://doi.org/10.1111/j.1467-9868.2007.00635.x
  14. Prasad, N. G. N. and Rao, J. N. K. (1990). The estimation of mean squared error of small-area estimators, Journal of the American Statistical Association, 85, 163-171. https://doi.org/10.2307/2289539
  15. Rao, J. N. K. (2003). Small Area Estimation, Hoboken, Wiley, New Jersey.
  16. Rao, J. N. K. and Yu, M. (1994). Small-area estimation by combining time series and cross-sectional data, Canadian Journal of Statistics, 22, 511-528. https://doi.org/10.2307/3315407
  17. Wang, J. and Fuller, W. A. (2003). The mean squared error of small area predictors constructed with estimated error variances, Journal of the American Statistical Association, 98, 716-723. https://doi.org/10.1198/016214503000000620
  18. Ybarra, L. M. R. and Lohr, S. L. (2008). Small area estimation when auxiliary information is measured with error, Biometrika, 95, 919-931. https://doi.org/10.1093/biomet/asn048