DOI QR코드

DOI QR Code

Measurement of Aerosol Parameters with Altitude by Using Two Wavelength Rotational Raman Signals

  • Song, Im-Kang (Department of Physics, Kongju National University) ;
  • Kim, Yong-Gi (Department of Physics, Kongju National University) ;
  • Baik, Sung-Hoon (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Park, Seung-Kyu (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Cha, Hyung-Ki (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Choi, Sung-Chul (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Chung, Chin-Man (Laboratory for Quantum Optics, Korea Atomic Energy Research Institute) ;
  • Kim, Duk-Hyeon (Division of Cultural Studies, Hanbat National University)
  • 투고 : 2010.07.02
  • 심사 : 2010.08.30
  • 발행 : 2010.09.25

초록

Aerosol size distribution provides good information for predicting weather changes and understanding cloud formation. Aerosol extinction coefficient and backscattering coefficient are measured by many scientists, but these parameters depend not only on aerosol size but on aerosol concentrations. An algorithm has been developed to measure aerosol parameters such as ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio without any assumptions by using two wavelength rotational Raman LIDAR signals. These parameters are good indicators for the aerosol size. And we can find ${\AA}$ngstr$\ddot{o}$m exponent, color ratio, and LIDAR ratio under various weather conditions. Finally, it can be seen that the ${\AA}$ngstr$\ddot{o}$m exponent has an inverse relationship to the particle size of the aerosol and the color ratio is linearly dependent on the aerosol size. An ${\AA}$ngstr$\ddot{o}$m exponent from 1.2 to 3.1, a color ratio from 0.28 to 1.04, and a LIDAR ratio 66.9 sr at 355 nm and 32.6 sr at 532 nm near the cloud were obtained.

키워드

참고문헌

  1. K. H. Lee, J. E. Kim, Y. J. Kim, J. Kim, and W. Hoyningen-Huene, “Impact of the smoke aerosol from Russian forest fires on the atmospheric environment over Korea during May 2003,” Atmos. Environ. 39, 85-99 (2005). https://doi.org/10.1016/j.atmosenv.2004.09.032
  2. W. N. Chen, S. Y. Chang, C. C. K. Chou, and T. K. Chen, “Total scatter-to-backscatter ratio of aerosol derived from aerosol size distribution measurement,” Int. J. Environment and Pollution 37, 45-54 (2009). https://doi.org/10.1504/IJEP.2009.024470
  3. P. B. Russell, R. W. Bergstrom, Y. Shinoznka, A. D. Clarke, P. F. Decarlo, J. L. Jimenez, J. M. Livingston, J. Redemann, B. Holben, O. Dubovic, and A. Strawa, “Absorption Ǻngström exponent in AERONET and related data as an indicator of aerosol composition,” Atmos. Chem. Phys. Discuss. 9, 21785-21817 (2009). https://doi.org/10.5194/acpd-9-21785-2009
  4. C. Y. She, R. J. Alvarez II, L. M. Caldwell, and D. A. Krueger, “High-spectral-resolution Rayleigh-Mie LIDAR measurement of aerosol in atmospheric profiles,” Opt. Lett. 17, 541-543 (1992). https://doi.org/10.1364/OL.17.000541
  5. V. Rizi, M. Larlori, G. Rocci, and G. Visconti, “Raman LIDAR observations of cloud liquid water,” Appl. Opt. 43, 6440-6453 (2004). https://doi.org/10.1364/AO.43.006440
  6. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter LIDAR,” Appl. Opt. 31, 7113-7131 (1992). https://doi.org/10.1364/AO.31.007113
  7. A. Angstrom, "On the atmospheric transmission of sun radiation and on dust in the atmosphere," Geogr. Ann. 11, 156-166 (1929). https://doi.org/10.2307/519399
  8. D. G. Kaskaoutis and H. D. Kambezidis, “Comparison of the Angstrom parameters retrieval in different spectral ranges with the use of different techniques,” Meteorol. Atmos. Phys. 99, 233-246 (2008). https://doi.org/10.1007/s00703-007-0279-y
  9. D. Kim, S. Park, H. Cha, J. Zhou, and W. Zhang, “New multi-quantum number rotational Raman LIDAR for obtaining temperature and aerosol extinction and backscattering scattering coefficients,” Appl. Phys. B 82, 1-4 (2006). https://doi.org/10.1007/s00340-005-2064-2
  10. D. Kim and H. Cha, “Rotational Raman LIDAR for obtaining aerosol scattering coefficients,” Opt. Lett. 30, 1728-1730 (2005). https://doi.org/10.1364/OL.30.001728
  11. D. Kim and H. Cha, “Rotational Raman LIDAR: design and performance test of meteorological parameters(Aerosol backscattering coefficients and temperature),” J. Korean Phys. Soc. 51, 352-357 (2007). https://doi.org/10.3938/jkps.51.352
  12. D. Kim and H. Cha, “Suggestion for qualitative LIDAR identification of different types of aerosol using the two wavelength rotational Raman and elastic LIDAR,” Opt. Lett. 31, 2915-2917 (2006). https://doi.org/10.1364/OL.31.002915
  13. H. Blasius, “Das Aehnlichkeitsgesetz bei Reibungsvorganegen,” Z. Ver. Dtsch. Ing. 16, 639-643 (1912).
  14. Y. M. Noh, Y. J. Kim, B. C. Choi, and T. Murayama, “Aerosol LIDAR ratio characteristics measured by a multi-wavelength Raman LIDAR system at Anmyeon Island, Korea,” Atmos. Res. 86, 76-87 (2007). https://doi.org/10.1016/j.atmosres.2007.03.006
  15. A. H. Omar and T. Babakaeva, “Aerosol optical properties derived from LIDAR observations using cluster analysis,” IEEE Intern. Geo. Rem. Sens. 3, 2212-2215 (2004). https://doi.org/10.1109/IGARSS.2004.1370800
  16. L. Prandlt, “Uber Flussigkeitsbewegung bei sehr Kleiner Reibung,” Verh. III. Intern. Math. Kongr. Heidelberg, 484-491 (1904).
  17. A. Ansmann and D. Muller, “LIDAR and atmosphere aerosol particles,” Springer 102, 112-117 (2005).

피인용 문헌

  1. Aerosol and cloud characteristics analysis methods using multiple kinds of Raman lidar signals vol.124, pp.12, 2013, https://doi.org/10.1016/j.ijleo.2012.03.012
  2. Low Stratospheric Wind Measurement Using Mobile Rayleigh Doppler Wind LIDAR vol.16, pp.2, 2012, https://doi.org/10.3807/JOSK.2012.16.2.141
  3. The Variation of Radiation Transmittance by the cw 1.07 ㎛ Fiber Laser and Water Aerosol Interaction vol.16, pp.3, 2012, https://doi.org/10.3807/JOSK.2012.16.3.191