DOI QR코드

DOI QR Code

A Study on Thermal Properties of Ethylene Glycol Containing Copper Oxide Nanoparticles

산화구리 나노분말을 포함하는 에틸렌글리콜 용액의 열전특성에 관한 연구

  • Kim, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Gyoung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 김창규 (한국원자력연구원 원자력재료연구부) ;
  • 이경자 (한국원자력연구원 원자력재료연구부) ;
  • 이창규 (한국원자력연구원 원자력재료연구부)
  • Received : 2010.06.04
  • Accepted : 2010.06.30
  • Published : 2010.08.28

Abstract

In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/$Cu_2O$ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be $6.86\;m^2\;g^{-1}$. From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to $90^{\circ}C$. On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.

Keywords

References

  1. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman: ASME Trans. J. Heat. Trans., 121 (1999) 280. https://doi.org/10.1115/1.2825978
  2. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke: Appl. Phys. Lett., 79 (2001) 2252. https://doi.org/10.1063/1.1408272
  3. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson: Appl. Phys. Lett., 78 (2001) 718. https://doi.org/10.1063/1.1341218
  4. S. U. S. Choi: ASME FED, 231 (2002) 99.
  5. H. Xie, J. Wang, T. Xi and Y. Liu: Int. J. Thermophys., 23 (2002) 571. https://doi.org/10.1023/A:1015121805842
  6. H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep: Appl. Phys. Lett., 83 (2003) 2931. https://doi.org/10.1063/1.1602578
  7. G. Schmin: Chem. Rev., 92 (1992) 1709. https://doi.org/10.1021/cr00016a002
  8. C. B. Hwang, Y. S. Fu and S. J. Yu: J. Catal., 195 (2000) 336. https://doi.org/10.1006/jcat.2000.2992
  9. K. H. Kim, J. H. Sim and I. H. Bae: Kor. J. Mater. Res., 18 (2008) 610. https://doi.org/10.3740/MRSK.2008.18.11.610
  10. C. K. Kim, G. J. Lee and C. K. Rhee: Kor. J. Mater. Res., 19 (2009) 468. https://doi.org/10.3740/MRSK.2009.19.9.468
  11. G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim: J. Ind. Eng. Chem., 9 (2003) 71.
  12. Y. H. Oh, G. H. Lee, J. H. Park and C. K. Rhee: J. Kor. Powd. Metall. Ins., 12 (2005) 186. https://doi.org/10.4150/KPMI.2005.12.3.186
  13. H. M. Lee, J. H. Park, S. M. Hong, Y. R. Uhm and C. K. Rhee: J. Kor. Powder. Metall. Inst., 16 (2009) 243. (Korean) https://doi.org/10.4150/KPMI.2009.16.4.243
  14. G. Viera, S. N. Sharma, J. J. Andujar, R. Q. Zhang, J. Costa and E. Bertran: Vacuum, 52 (1999) 183. https://doi.org/10.1016/S0042-207X(98)00203-6
  15. R. Prasher, D. Song and J. Wang: Appl. Phy. Letters, 89 (2006) 133108. https://doi.org/10.1063/1.2356113
  16. R. L. Hamilton and O. K. Crosser: I & EC Fundamentals, 1 (1962) 187. https://doi.org/10.1021/i160003a005
  17. S. K. Das, N. Putra, P. Thiesen and W. Roetzel: J. Heat Transfer. 125 (2003) 567. https://doi.org/10.1115/1.1571080
  18. S. P. Jang and S. U. S. Choi: Appl. Phys. Lett., 84 (2004) 4316. https://doi.org/10.1063/1.1756684

Cited by

  1. Thermoelectric Powder by Gas Atomization Process vol.18, pp.5, 2011, https://doi.org/10.4150/KPMI.2011.18.5.449