DOI QR코드

DOI QR Code

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Yoon, J.K. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Kwon, J.S. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Kim, Y.I. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Kim, S.H. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Park, J.H. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Kim, Y.J. (Division of Applied Chemistry & Biotechnology, Hanbat National University) ;
  • Park, D.Y. (Department of Applied Materials Engineering, Hanbat National University) ;
  • Kim, B.C. (ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong) ;
  • Wallac, G.G. (ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong) ;
  • Ko, J.M. (Division of Applied Chemistry & Biotechnology, Hanbat National University)
  • Received : 2010.04.13
  • Accepted : 2010.06.08
  • Published : 2010.08.20

Abstract

Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Keywords

References

  1. Kar, J. P.; Kumar, M.; Choi, J. H.; Das, S. N.; Choi, S. Y.; Myoung, J. M. Solid State Commun. 2009, 149, 1337. https://doi.org/10.1016/j.ssc.2009.05.024
  2. Zhang, Z. H.; Qi, X. Y.; Jian, J. K.; Duan, X. F. Micron. 2006, 37, 229. https://doi.org/10.1016/j.micron.2005.10.016
  3. Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L. Nature 1997, 389, 699. https://doi.org/10.1038/39535
  4. Jeon, M.; Kamisako, K. Mater. Lett. 2009, 63, 777. https://doi.org/10.1016/j.matlet.2009.01.001
  5. Luo, L.; Zhang, Y.; Mao, S. S.; Lin, L. Sens. Actuators, A 2006, 127, 201. https://doi.org/10.1016/j.sna.2005.06.023
  6. Sheini, F. J.; Joag, D. S.; More, M. A. Ultramicroscopy 2009, 109, 418. https://doi.org/10.1016/j.ultramic.2008.11.025
  7. Baxter, J. B.; Aydil, E. S. Sol. Energy Mater. Sol. Cells 2006, 90, 607. https://doi.org/10.1016/j.solmat.2005.05.010
  8. Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. https://doi.org/10.1021/nn900324q
  9. Ganesh, T.; Mane, R. S.; Cai, G.; Jin-Ho, C.; Sung-Hwan, H. J. Phys. Chem. C 2009, 113, 7666. https://doi.org/10.1021/jp901224n
  10. Sun-Ki, M.; Oh-Sim, J.; Kwang-Deog, J.; Mane, R. S.; Sung-Hwan, H. Electrochem. Commun. 2006, 8, 223. https://doi.org/10.1016/j.elecom.2005.11.019
  11. Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G.; Bastide, S.; Levy-Clement, C. Comptes Rendus Chimie. 2006, 9, 717. https://doi.org/10.1016/j.crci.2005.03.034
  12. Chavhan, S. D.; Mane, R. S.; Wonjoo, L. ; Senthilarasu, S.; Sung-Hwan, H.; Lee, J.; Soo-Hyoung, L.; Electrochim. Acta 2009, 54, 3169. https://doi.org/10.1016/j.electacta.2008.11.065
  13. Ju-Hyun, A.; Mane, R. S.; Todkar, V. V.; Sung-Hwan, H. Int. J. Electrochem. Sci. 2007, 2, 517.
  14. Shen, Q.; Sato, T.; Hashimoto, M.; Chen, C.; Toyoda, T. Thin Solid Films 2006, 499, 299. https://doi.org/10.1016/j.tsf.2005.07.019
  15. Park, Y. M.; Andre, R.; Kasprzak, J.; Dang, L. S.; Bellet-Amalric, E. Appl. Surf. Sci. 2007, 253, 6946. https://doi.org/10.1016/j.apsusc.2007.02.012
  16. Levichev, S.; Chahboun, A.; Basa, P.; Rolo, A. G.; Barradas, N. P.; Alves, E.; Horvath, Zs. J.; Conde, O.; Gomes, M. J. M. Microelectron. Eng. 2008, 85, 2374. https://doi.org/10.1016/j.mee.2008.09.003
  17. H. Chenga, H. Y.; Chaoa, Y. H.; Changa, C. H.; Hsua, C. L.; Chenga, T. T.; Chena, Y. F.; Chena, M. W. Chub, Physica E 2008, 40, 2000. https://doi.org/10.1016/j.physe.2007.09.053
  18. Elango, T.; Subramanian, V.; Murali, K. R. Surf. Coat. Technol. 2000, 123, 8. https://doi.org/10.1016/S0257-8972(99)00163-2
  19. Hernandez-Perez, M. A.; Aguilar-Hernandez, J.; Contreras-Puente, G.; Vargas-Garcia, J. R.; Rangel-Salinas, E. Physica E 2008, 40, 2535. https://doi.org/10.1016/j.physe.2007.10.102
  20. Wang, X.; Gao-Rong, H. Microelectron. Eng. 2003, 66, 166. https://doi.org/10.1016/S0167-9317(03)00042-X
  21. Mohamed S. El-Deab Int. J. Electrochem. Sci. 2009, 4, 1329.
  22. Mao-Quan, C.; Ye, S.; Xiao-Yan, S.; Guo-Jie, L. Physica. E 2006, 35, 75. https://doi.org/10.1016/j.physe.2006.05.002
  23. Sun-Ki, M.; Oh-Sim, J.; Kwang-Deog, J.; Rajaram, S. M.; Sung-Hwan, H. Electrochem. Commun. 2006, 8, 223. https://doi.org/10.1016/j.elecom.2005.11.019
  24. Venkatachalam, S.; Mangalaraj, D.; Narayandass, S. K.; Kim, K.; Yi, J. Physica B 2005, 358, 27. https://doi.org/10.1016/j.physb.2004.12.022
  25. Murali, R.; Jayasuthaa, B. Sol. Energy 2009, 83, 891. https://doi.org/10.1016/j.solener.2008.12.014
  26. Soundararajan, D.; Mangalaraj, D.; Nataraj, D.; Dorosinskii, L.; Santoyo-Salazar, J.; Jeon, H. C.; Kang, T. W. Appl. Surf. Sci. 2009, 255, 7517. https://doi.org/10.1016/j.apsusc.2009.04.012
  27. Mandal, K. C. J. Mater. Sci. Lett. 1980, 9, 1203. https://doi.org/10.1007/BF00721892
  28. Levy-Clement, C.; Tena-Zaera, R.; Ryan, M. A.; Katty, A.; Hodes, G. Adv. Mater. 2005, 17, 512.
  29. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455. https://doi.org/10.1038/nmat1387
  30. Elias, J.; Tena-Zaera, R.; Guillaume-Yangshu, W.; Levy-Clement, C. Chem. Mater. 2008, 20, 6633. https://doi.org/10.1021/cm801131t
  31. Lee, W. J.; Ramasamy, E.; Lee, D. Y.; Song, J. S. ACS Appl. Mater. Interfaces 2009, 1, 1145. https://doi.org/10.1021/am800249k
  32. Xie, Y. Electrochim. Acta 2006, 51, 3399. https://doi.org/10.1016/j.electacta.2005.10.003
  33. Yuh-Lang Lee, B.; Yi-Siou, L. Adv. Funct. Mater. 2009, 19, 604. https://doi.org/10.1002/adfm.200800940

Cited by

  1. Review on the Materials Properties and Photoelctrochemical (PEC) Solar Cells of CdSe, Cd1-xZnxSe, Cd1-xInxSe, Thin Films vol.832, pp.None, 2010, https://doi.org/10.4028/www.scientific.net/msf.832.1