Genre-based Collaborative Filtering Movie Recommendation

장르 기반 Collaborative Filtering 영화 추천

  • 황기태 (한성대학교 컴퓨터공학과)
  • Received : 2010.05.03
  • Published : 2010.06.30

Abstract

There have been proposed several movie recommendation algorithms based on Collaborative Filtering(CF). CF decides neighbors whose ratings are the most similar to each other and it predicts how well users will like new movies, based on ratings from neighbors. This paper proposes a new method to improve the result predicted by CF based on genres of the movies seen by users. The proposed method can be combined to the most of all existing CF algorithms. In this paper, a performance evaluation has been conducted between an existing simple CF algorithm and CF-Genre that is the proposed genre-based method added to the CF algorithm. The result shows that CF-Genre improves 3.3% in prediction performance over existing CF algorithms.

Collaborative Filtering(CF) 기법에 기반을 둔 다양한 영화 추천 방법들이 제안 되어 왔다. CF는 영화를 본 사람들이 직접 영화에 대해 평가한 점수를 기반으로 같은 성향을 가진 이웃 그룹을 결정하고, 새로운 영화에 대해 그 영화를 이미 본 이웃의 점수를 기반으로 사용자의 새로운 영화에 대한 선호도 값을 예측하는 방법이다. 본 논문에서는 사용자에 따라 영화 장르에 대한 선호도 정보를 CF의 예측 값에 반영하는 새로운 방법을 제안한다. 이 방법은 CF를 기반으로 하는 모든 종류의 추천 방법에 결합하여 사용할 수 있다. 본 논문에서는 기존의 CF알고리즘에 장르기반 알고리즘을 결합한 CF-Genre의 성능과 기존의 CF 알고리즘의 성능을 측정 비교하였다. 성능 평가의 결과 CF-Genre가 기존 CF의 예측 성능을 3.3% 정도 개선하였다.

Keywords

References

  1. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Rie, J., "GroupLens: An Open Architecture for Collaborative Filtering of Netnews," Proceedings of ACM CSCW94 Conference on Computer Supported Cooperative Work, 1994.
  2. Kostan J., Miller B., Maltz D., Herlocker J., Gordon L., Riedl J., "GroupLens: Applying Collaborative Filtering to Usenet News" Communications of the ACM, Vol. 40, No. 3, pp. 77-87, 1997 https://doi.org/10.1145/245108.245126
  3. Marco Balabanovic and Yoav Shoham, "Fab: Content-based collaborative recommendation", Communications of the ACM, Vol, 40, No, 3, pp.66-72, 1997 https://doi.org/10.1145/245108.245124
  4. Good N.,Schafer J. B., Kostan J., Borchers A., Sarwar B., Herlocker J., and Riedl J., "Combining Collaborative Filtering with Personal Agents for Better Recommendations", Conf. on the American Association of Artificial Intelligence. pp. 439-446, 1999.
  5. Will Hill, Larry Stead, Mark Rosenstein, and George Furnas, "Recommending and evaluating choices in a virtual community of use". Proc. of ACM CHI'95 Conf. in Human Factors in Computing Systems, pp. 195-201, 1995.
  6. Herlocker J., Konstan J., Borchers A., Riedl J., "An Algorithm Framework for Performing Collaborative Filtering", Proc. of ACM SIGIR'99, ACM Press, 1999
  7. Jin Won Park, Min Cheul Shin, Sang Min Choi, Kitae Hwang, "Analysis for Genre-based Movie Recommendation", Journal of Engineering Research, Hansung University, 2009
  8. J. Ben Schafer, Joseph Konstan, Jhon Riedl, "Recommender Systems in E-Commerce," GroupLens Research Project Department of Computer Science and Engineering University of Minnesota, 1999.
  9. J. Ben Schaferm Joseph A. Konstan, John Riedl, "E-Commerce Recommendation Applications", Journal of Data Mining and Knowledge Discovery, Vol. 5, No, 1/2, pp.115-152, 2000
  10. Badrul Sarwar, George Karypis, Joseph Konstan, and John Rie, "Analysis of Recommendation Algorithms for E-Commerce," The ACM E-Commerce 2000 Conference, 2000.
  11. Badrul Sarwar, George Karypis, Joseph Konstan, and John Rie, "Item-based Collaborative Filtering Recommendation Algorithms," Accepted for publication at the WWW10 Conference, May, 2001.
  12. Ling. K., Beenen G., Ludford P., Wang X., Chang K., Li X., Cosley D., Frankowski D., Terveen L., Rashid A. M., Resnick P., Kraut R. "Using Social Psychology to Motivate Contributions to Online Communities", Journal of Computer-Mediated Communication, Vol. 10, No. 4, 2005