Protection by Methanol Extract of Longan (Dimocarpus Longan Lour.) Peel against Kainic acid-Induced Seizure

  • Received : 2010.03.25
  • Accepted : 2010.04.30
  • Published : 2010.06.30

Abstract

This experiment was undertaken to investigate whether methanol extract of fruit peel of Dimocarpus longan Lour. (MEFL) protects against kainic acid (KA)-induced seizure. Oral administration of MEFL (1, 2 and 4 mg/kg) increased KA (50 mg/kg)-induced survival rate and latency of convulsion onset, and deceased seizure scores and weight loss induced by intraperitoneal (i.p) injection of KA in mice. In addition, MEFL protected against cell death in the hippocampus of rat brain after KA-administration as analyzed by using TUNEL assay in rats. MEFL also significantly blocked seizure-form of electroencephalogram (EEG) power spectra induced by KA in rats. MEFL also inhibited elevation of [$Ca^{2+}$]i and increased [$Cl^-$]i induced by KA in cultured neuronal cells. Therefore, it is suggested that MEFL protects against seizure induced by KA, decreasing [$Ca^{2+}$]i.

Keywords

References

  1. Alldredge, B.K. and Lowenstein, D.H., Status epilepticus: new concepts. Curr Opin Neurol., 12, 183-190 (1999). https://doi.org/10.1097/00019052-199904000-00009
  2. Allison, C. and Pratt, J.A., Neuroadaptive processes in GABAergic and glutamatergic systems in benzodiazepine dependence. Pharmacol. Ther., 98, 171-195 (2003). https://doi.org/10.1016/S0163-7258(03)00029-9
  3. Ben-Ari, Y., Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci., 3, 728-739 (2002). https://doi.org/10.1038/nrn920
  4. Chapman, A.G., Glutamate receptors in epilepsy. Prog. Brain Res., 116, 371-383 (1998). https://doi.org/10.1016/S0079-6123(08)60449-5
  5. Choi, D.W., Excitotoxic cell death. J. Neurobiol., 23, 1261-1276 (1992). https://doi.org/10.1002/neu.480230915
  6. Coyle, J.T. and Puttfarcken, P., Oxidative stress, glutamate, and neurodegenerative disorders. Science, 262, 689-695 (1993). https://doi.org/10.1126/science.7901908
  7. Giusti, P., Franceschini, D., Petrone, M., Manev, H., and Floreani, M., In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J. Pineal. Res., 20, 226-231 (1996). https://doi.org/10.1111/j.1600-079X.1996.tb00263.x
  8. Hansen, S.L., Sperling, B.B., and Sanchez, C., Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 28, 105-113 (2004). https://doi.org/10.1016/j.pnpbp.2003.09.026
  9. Heinemann, U., Hamon, B., and Konnerth, A., GABA and baclofen reduce changes in extracellular free calcium in area CA1 of rat hippocampal slices. Neurosci. Lett., 47, 295-300 (1984). https://doi.org/10.1016/0304-3940(84)90529-9
  10. Hsieh, M.C., Shen, Y.J., Kuo, Y.H., and Hwang, L.S., Antioxidative activity and active components of longan (Dimocarpus longan Lour.) flower extracts. J. Agric. Food Chem., 56, 7010-7016 (2008). https://doi.org/10.1021/jf801155j
  11. Kriz, J., Zupan, G., and Simonic, A., Differential effects of dihydropyridine calcium channel blockers in kainic acid-induced experimental seizures in rats. Epilepsy Res., 52, 215-225 (2003). https://doi.org/10.1016/S0920-1211(02)00213-9
  12. Liu, W., Liu, R., Chun, J.T., Bi, R., Hoe, W., Schreiber, S.S., and Baudry, M., Kainate excitotoxicity in organotypic hippocampal slice cultures: evidence for multiple apoptotic pathways. Brain Res., 916, 239-248 (2001). https://doi.org/10.1016/S0006-8993(01)03006-2
  13. Lothman, E.W., Collins, R.C., and Ferrendelli, J.A., Kainic acid-induced limbic seizures: electrophysiologic studies. Neurology, 31, 806-812 (1981). https://doi.org/10.1212/WNL.31.7.806
  14. Ma, Y., Ma, H., Eun, J.S., Nam, S.Y., Kim, Y.B., Hong, J.T., Lee, M.K., and Oh, K.W., 2009. Methanol extract of Longanae Arillus augments pentobarbital-induced sleep behaviors through the modification of GABAergic systems. J. Ethnopharmacol., 122, 245-250 (2009). https://doi.org/10.1016/j.jep.2009.01.012
  15. McNamara, J.O., Identification of genetic defect of an epilepsy: strategies for therapeutic advances. Epilepsia, 35 Suppl 1, S51-57 (1994). https://doi.org/10.1111/j.1528-1157.1994.tb05929.x
  16. Minakata, H., Komura, H., Tamura, S.Y., Ohfune, Y., Nakanishi, K., and Kada, T., Antimutagenic unusual amino acids from plants. Experientia, 41, 1622-1623 (1985). https://doi.org/10.1007/BF01964840
  17. Ohashi, H., Nishikawa, K., Ayukawa, K., Hara, Y., Nishimoto, M., Kudo, Y., Abe, T., Aoki, S., and Wada, K., Alpha 1-adrenoceptor agonists protect against stress-induced death of neural progenitor cells. Eur. J. Pharmacol., 573, 20-28 (2007). https://doi.org/10.1016/j.ejphar.2007.06.060
  18. Okuyama, E., Ebihara, H., Takeuchi, H., and Yamazaki, M., Adenosine, the anxiolytic-like principle of the Arillus of Euphoria longana. Planta Med., 65, 115-119 (1999). https://doi.org/10.1055/s-1999-14055
  19. Pal, S., Sombati, S., Limbrick, D.D., Jr., and DeLorenzo, R.J., In vitro status epilepticus causes sustained elevation of intracellular calcium levels in hippocampal neurons. Brain Res., 851, 20-31 (1999). https://doi.org/10.1016/S0006-8993(99)02035-1
  20. Park, J.H., Lee, H.J., Koh, S.B., Ban, J.Y., and Seong, Y.H., Protection of NMDA-induced neuronal cell damage by methanol extract of zizyphi spinosi semen in cultured rat cerebellar granule cells. J. Ethnopharmacol., 95, 39-45 (2004). https://doi.org/10.1016/j.jep.2004.06.011
  21. Rangkadilok, N., Sitthimonchai, S., Worasuttayangkurn, L., Mahidol, C., Ruchirawat, M., and Satayavivad, J., Evaluation of free radical scavenging and antityrosinase activities of standardized longan fruit extract. Food Chem. Toxicol., 45, 328-336 (2007). https://doi.org/10.1016/j.fct.2006.08.022
  22. Rangkadilok, N., Worasuttayangkurn, L., Bennett, R.N., and Satayavivad, J., Identification and quantification of polyphenolic compounds in Longan (Euphoria longana Lam.) fruit. J. Agric. Food Chem., 53, 1387-1392 (2005). https://doi.org/10.1021/jf0403484
  23. Regan, R.F. and Choi, D.W., Glutamate neurotoxicity in spinal cord cell culture. Neuroscience 43, 585-591 (1991). https://doi.org/10.1016/0306-4522(91)90317-H
  24. Ryu, J., Kim, J.S., and Kang, S.S., Cerebrosides from Longan Arillus. Arch. Pharm. Res. 26, 138-142 (2003). https://doi.org/10.1007/BF02976659
  25. Saija, A., Princi, P., Pisani, A., Lanza, M., Scalese, M., Aramnejad, E., Ceserani, R., and Costa, G., Protective effect of glutathione on kainic acid-induced neuropathological changes in the rat brain. Gen. Pharmacol. 25, 97-102 (1994). https://doi.org/10.1016/0306-3623(94)90016-7
  26. Speckmann, E.J., Walden, J., and Bingmann, D., Functional implication of calcium ions in epileptic seizures. Antiepileptic effects of organic calcium antagonists. Arzneimittelforschung, 39, 149-156 (1989).
  27. Sperk, G., Lassmann, H., Baran, H., Seitelberger, F., and Hornykiewicz, O., Kainic acid-induced seizures: dose-relationship of behavioural, neurochemical and histopathological changes. Brain Res., 338, 289-295 (1985). https://doi.org/10.1016/0006-8993(85)90159-3
  28. Sun, J., Shi, J., Jiang, Y., Xue, S.J., and Wei, X., Identification of two polyphenolic compounds with antioxidant activities in longan pericarp tissues. J. Agric. Food Chem., 55, 5864-5868 (2007). https://doi.org/10.1021/jf070839z
  29. Vellucci, S.V. and Webster, R.A., Antagonism of caffeine-induced seizures in mice by Ro15-1788. Eur. J. Pharmacol., 97, 289-293 (1984). https://doi.org/10.1016/0014-2999(84)90462-X
  30. Vermes, I., Haanen, C., and Reutelingsperger, C., Flow cytometry of apoptotic cell death. J. Immunol. Methods, 243, 167-190 (2000). https://doi.org/10.1016/S0022-1759(00)00233-7
  31. West, M.R. and Molloy, C.R., A microplate assay measuring chloride ion channel activity. Anal. Biochem., 241, 51-58 (1996). https://doi.org/10.1006/abio.1996.0377
  32. West, S.S., Golden, J.F., Menter, J.M., and Love, L.D., Quantitation of fluorescence fading phenomena for identifying intracellular biopolymers. J. Histochem. Cytochem., 24, 59-63 (1976). https://doi.org/10.1177/24.1.1254936