References
- Beck, G., Bergmann, K., Kebeler, K., and Wess, G., Synthesis of a new flavonoid-antioxidant. Tetrahedron Lett., 31, 7293-7296 (1990). https://doi.org/10.1016/S0040-4039(00)88547-0
- Boots, A.W., Wilms, L.C., Swennen, E.L.R., Kleinjans, J.C.S., Bast, A., and Haenen, G.R.M.M., In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutr., 24, 703-710 (2008). https://doi.org/10.1016/j.nut.2008.03.023
- Chen, X., Cui, L., Duan, X., Ma, B., and Zhong, D., Pharmacokinetics and metabolism of two flavonoid scutellarin in humans after a single oral administration. Drug Metab. Dispos., 34, 1345-1352 (2006). https://doi.org/10.1124/dmd.106.009779
- Cho, H., Yun, C.-W., Park, W.-K., Kong, J.-Y., Kim, K.S., Park, Y., Lee, S., and Kim, B.-K., Modulation of the activity of proinflammatory enzymes, COX-2 and iNOS, by chrysin derivatives. Pharm. Res., 49, 37-43 (2004). https://doi.org/10.1016/S1043-6618(03)00248-2
- Chung, M.-I., Han, F.-W., Lin, H.-C., Liou, S.-S., Huang, P.-L., Ko, H.-H., Chang, Y.-L., Kang, J.-J., Teng, C.-M., and Lin, C.-N., Synthesis, antiplatelet and vasorelaxing effects of monooxygenated flavones and flavonoxypropanolamines. J. Pharm. Pharmacol., 53, 1601-1609 (2001). https://doi.org/10.1211/0022357011778205
- Conquer, J.A., Maiani, G., Azzini, E., Raguzzini, A., and Holub, B.J., Supplementation with quercetin markedly increase plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J. Nutr., 128, 593-597 (1998). https://doi.org/10.1093/jn/128.3.593
- Conti, C., Desideri, N., Orsi, N., Sestili, I., and Stein, M.L., Synthesis and antirhinovirus activity of cyano and amidino substituted flavanoids. Eur. J. Chem., 25, 725-730 (1990). https://doi.org/10.1016/0223-5234(90)90191-5
- Cunningham, B.D.M., Threadgill, M.D., Grounwater, P.W., Dale, I.L., and Hickman, J.A., Synthesis and biological evaluation of a series of flavones designed as inhibitors of protein tyrosine kinases. Anti- Cancer Drug Design, 7, 365-384 (1992).
- Dao, T.T., Chi, Y.S., Kim, J., Kim, H.P., Kim, S.H., and Park, H., Synthesis and PGE2 inhibitory activity of 5,7-dihydroxyflavones and their O-methylated flavone analogs. Arch. Pharm. Res., 26, 345-350 (2003a). https://doi.org/10.1007/BF02976690
- Dao, T.T., Chi, Y.S., Kim, J., Kim, H.P., Kim, S., and Park, H., Synthesis and inhibitory activity against COX-2 catalyzed prostaglandin production of chrysin derivatives. Bioorg. Med. Chem. Lett., 14, 1165-1167 (2004). https://doi.org/10.1016/j.bmcl.2003.12.087
- Dao, T.T., Oh, J.W., Chi, Y.S., Kim, H.P., Sin, K.-S., and Park, H., Synthesis and PGE2 inhibitory activity of vinylated and allylated chrysin analogues. Arch. Pharm. Res., 26, 581-584 (2003b). https://doi.org/10.1007/BF02976703
- de Pascual-Teresa, S., Johnston, K.L., DuPont, M.S., O'Leary, K.A., Needs, P.W., Morgan, L.M., Clifford, M.N., Bao, Y., and Williamson, G., Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. J. Nutr., 134, 552-557 (2004). https://doi.org/10.1093/jn/134.3.552
- Edwards, R.L., Lyon, T., Litwin, S.E., Rabousky, A., Symons, J.D., and Jalili, T., Quercetin reduces blood pressure in hypertensive subjects. J. Nutr., 137, 2405-2411 (2007). https://doi.org/10.1093/jn/137.11.2405
- Egert, S., Bosy-Westphal, A., Seiberi, J., Kurbitz, C., Settler, U., Plachta- Danielzik, S., Wagner, A.E., Frank, J., Schrezenmeir, J., Rimbach, G., Wolffran, S., and Muller, M.J., Quercetin reduces systolic blood pressure and plasma oxidized low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr., 102, 1065-1074 (2009). https://doi.org/10.1017/S0007114509359127
- Ertan, R., Goker, H., Ertan, M., Beretz, A., Cazenave, J.P., Haag, M., and Anton, R., Synthesis of some flavone derivatives: potent inhibitors of human platelet aggregation. Chimie, 26, 735-738 (1991).
- Ferry, D.R., Smith, A., Malkhandi, J., Fyfe, D.W., de Takats, P.G., Anderson, D., Baker, J., and Kerr, D.J., Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clinical Cancer Research, 2, 659-668 (1996).
- Filipe, P., Silva, A.M.S., Seixas, R.S.G.R., Pinto, D.C.G.A., Santos, A., Patterson, L.K., Silva, J.N., Cavaleir, J.A.S., Freitas, J.P., Maziere, J.- C., Santus, R., and Morliere, P., The alkyl chain length of 3-alkyl- 3',4',5,7-tetrahydroxyflavones modulates effective inhibition of oxidative damage in biological systems: Illustration with LDL, red blood cells and human keratinocytes. Biochem. Pharmacol., 77, 957- 964 (2009). https://doi.org/10.1016/j.bcp.2008.11.023
- Gabor, M., Anti-inflammatory and anti-allergic properties of flavonoids, In Cody et al. (eds.), Plant flavonoids in biology and medicine: Biochemical, pharmacological, and structure-activity relationships, Alan R. Liss, New York, 1986, pp. 471-480.
-
Gao, H. and Kawabata, J.,
$alpha$ -Glucosidase inhibition of 6-hydroxyflavones. Part 3: Synthesis and evaluation of 2,3,4-trihydroxybenzoylcontaining flavonoid analogs and 6-aminoflavones as$alpha$ -glucosidase inhibitors. Bioorg. Med. Chem., 13, 1661-1671 (2005). https://doi.org/10.1016/j.bmc.2004.12.010 - Gugler, R., Leschik, M., and Dengler, H.J., Disposition of quercetin in man after single oral and intraveneous doses. Eur. J. Clin. Pharmacol., 9, 229-234 (1975). https://doi.org/10.1007/BF00614022
- Gunnarsson, G.T., Riaz, M., Adams, J., and Desai, U.R., Synthesis of persulfated flavonoids using 2,2,2-trichloroethyl protecting group and their factor Xa inhibition potential. Bioorg. Med. Chem., 13, 1783- 1789 (2005). https://doi.org/10.1016/j.bmc.2004.11.060
- Han, C.K., Son, M.J., Chang, H.W., Chi, Y.S., Par, H., and Kim, H.P., Inhibition of prostaglandin production by a structurally-optimized flavonoid derivative, 2',4',7-trimethoxyflavone and cellular action mechanism. Biol. Pharm. Bull., 28, 1366-1370 (2005). https://doi.org/10.1248/bpb.28.1366
- Havsteen, B., Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol., 32, 1141-1148 (1983). https://doi.org/10.1016/0006-2952(83)90262-9
- Herencia, F., Ferrandiz, M.L., Ubeda, A., Gwillen, I., Dominguez, J.N., Charris, J.E., Lobo, G.M., and Alcaraz, M.J., Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages. FEBS Lett., 453, 129-134 (1999). https://doi.org/10.1016/S0014-5793(99)00707-3
- Hirano, T., Oka, K., Kawashima, E., and Akiba, M., Effects of synthetic and naturally occurring flavonoids on mitogen-induced proliferation of human peripheral-blood lymphocytes. Life Sci., 45, 1407-1441 (1989). https://doi.org/10.1016/0024-3205(89)90028-3
- Horie, T., Tsukayama, M., Kourai, H., Yokoyama, C., Furukawa, M., Yoshimoto, T., Yamamoto, S., Waranabe-Kohno, S., and Ohata, K., Synthesis of 5,6,7- and 5,7,8-trioxygenated 3',4'-dihydroxyflavones having alkoxy groups and their inhibitory activities against arachidonate 5-lipoxygenase. J. Med. Chem., 29, 2256-2262 (1986). https://doi.org/10.1021/jm00161a021
- Huang, W.-H., Lee, A.-R., Chien, P.-Y., and Chou, T.-Z., Synthesis of baicalein derivatives as potential antiaggregatory and antiinflammatory agents. J. Pharm. Pharmacol., 57, 219-225 (2005). https://doi.org/10.1211/0022357055371
- Jang, J., Kim, H.P., and Park, H., Structure and anti-inflammatory activity relationships of wogonin derivatives. Arch. Pharm. Res., 28, 877-884 (2005). https://doi.org/10.1007/BF02973870
- Joo, A.H., Kim, J.K., Kang, S.-H., Noh, M.-S., Ha, J.-Y., Choi, J.K., Lim, K.M., Lee, C.H., and Chung, S., 2,3-Diarylbenzopyran derivatives as a novel class of selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett., 13, 413-417 (2003). https://doi.org/10.1016/S0960-894X(02)00952-6
- Kim, H.P., Son, K.H., Chang, H.W., and Kang, S.S., Anti-inflammatory flavonoids and cellular action mechanisms. J Pharmacol. Sci., 96, 229-245 (2004a). https://doi.org/10.1254/jphs.CRJ04003X
- Kim, S.J., Park, H., and Kim, H.P., Inhibition of nitric oxide production from lipopolysaccharide-treated RAW264.7 cells by synthetic flavones: Structure-activity relationship and action mechanism. Arch. Pharm. Res., 27, 937-943 (2004b). https://doi.org/10.1007/BF02975847
- Kim, Y.H., Kim, J., Park, H., and Kim, H.P., Anti-inflammatory activity of the synthetic chalcone derivatives: Inhibition of inducible nitric oxide synthase-catalyzed nitric oxide production from lipopolysaccharidetreated RAW 264.7 cells. Biol. Pharm. Bull., 30, 1450-1455 (2007). https://doi.org/10.1248/bpb.30.1450
- Knekt, P., Kumpulainen, J., Jarvinen, R., Rissanen, H., Heliovaara, M., Reunanen, A., Hakulinen, T., and Aromaa, A., Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 76, 560-568 (2002). https://doi.org/10.1093/ajcn/76.3.560
-
Kometani, T., Fukuda, T., Kakuma, T., Kawaguchi, K., Tamura, W., Kumazawa, Y., and Nagata, K., Effects of
$\alpha$ -glucosylhesperidin, a bioactive food material, on collagen-induced arthritis in mice and rheumatoid arthritis in humans. Immunopharmacol. Immunotoxicol., 30, 117-134 (2008). https://doi.org/10.1080/08923970701812688 - Lebeau, J., Furman, C., Bernier, J.-U., Duriez, P., Teissier, E., and Cotelle, N., Antioxidant properties of di-tert-butylhydroxylated flavonoids. Free Rad. Biol. Med., 29, 900-912 (2000). https://doi.org/10.1016/S0891-5849(00)00390-7
- Lee, S.J., Baek, H.J., Lee, C.H., and Kim, H.P., Anti-inflammatory activity of isoflavonoids from Pueraria radix and biochanin A derivatives. Arch. Pharm. Res., 17, 31-35 (1994). https://doi.org/10.1007/BF02978244
- Levy, R.M., Saikovsky, R., Shmidt, E., Khokhlov, A., and Burnett, B.P., Flavocoxid is as effective as naproxen for managing the signs and symptoms of osteoarthritis of the knee in humans: a short-term randomized, double-blind pilot study. Nutr. Res., 29, 298-304 (2009). https://doi.org/10.1016/j.nutres.2009.04.003
- Liao, H.-L. and Hu, M.-K., Synthesis and anticancer activities of 5,6,7- trimethylbaicalein derivatives. Chem. Pharm. Bull., 52, 462-465 (2004).
- Lin, C.-N., Lee, T.-H., Hsu, M.-F., Wang, J.-P., Ko, F.-N., and Teng, C.- M., 2'.5'-Dihydroxychalcone as a potent chemical mediator and cyclooxygenase inhibitor. J. Pharm. Pharmacol., 49, 530-536 (1997). https://doi.org/10.1111/j.2042-7158.1997.tb06837.x
- Liu, T., Xu, Z., He, Q., Chen, Y., Yang, B., and Hu, Y., Nitrogencontaining flavonoids as CDK1/cyclin B inhibitors: Design, synthesis, and biological evaluation. Bioorg. Med. Chem. Lett., 17, 278-281 (2007). https://doi.org/10.1016/j.bmcl.2006.07.088
- Loke, W.M., Hodgson, J.M., Proudfoot, J.M., McKinly, A.J., Puddey, I.B., and Croft, K.D., Pure dietary flavonoids quercetin and (-)- epicatechin augment nitric oxide products and reduce endothelin-1 acutely in healthy men. Am. J. Clin. Nutr., 88, 1018-1025 (2008). https://doi.org/10.1093/ajcn/88.4.1018
- Losiewicz, M.D., Carlson, B.A., Kaur, G., Sausville, E.A., and Worland, P.J., Potent inhibition of CDC2 kinase activity by the flavonoid L86- 8275. Biochem. Biophys. Res. Comm., 201, 589-595 (1994). https://doi.org/10.1006/bbrc.1994.1742
- McAnulty, S.R., McAnulty, L.S., Nieman, D.C., Quindry, J.C., Hosick, P.A., Hudson, M.H., Still, L., Henson, D.A., Milne, G.L., Morrow, J.D., Dumke, C.L., Utter, A.C., Triplett, N.T., and Dibarnardi, A., Chronic quercetin ingestion and exercise-induced oxidative damage and inflammation. Appl. Physiol. Nutr. Metab., 33, 254-262 (2008). https://doi.org/10.1139/H07-177
- Middleton, E., Kandaswami, C., and Theoharides, T.C., The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 52, 673-751 (2000).
- Moon, Y.J., Wang, L., DiCenzo, R., and Morris, M.E., Quercetin pharmacokinetics in humans. Biopharm. Drug. Dispos., 29, 205-217 (2008). https://doi.org/10.1002/bdd.605
- Nagai, T., Miyaichi, Y., Tomimori, T., and Yamada, H., Inhibition of mouse liver sialidase by plant flavonoids. Biochem. Biophys. Res. Comm., 163, 25-31 (1989). https://doi.org/10.1016/0006-291X(89)92093-7
- Park, H., Dao, T.T., and Kim, H.P., Synthesis and inhibition of PGE2 production of 6,8-disubstituted chrysin derivatives. Eur. J. Med. Chem., 40, 943-948 (2005). https://doi.org/10.1016/j.ejmech.2005.04.013
- Quintin, J., Buisson, D., Thoret, S., Cresteil, T., and Lewin, G., Semisynthesis and antiproliferative evaluation of a series of 3'- aminoflavones. Bioorg. Med. Chem. Lett., 19, 3502-3506 (2009). https://doi.org/10.1016/j.bmcl.2009.05.008
- Ullmann, U., Metzner, J., Frank, T., Cohn, W., and Riegger, C., Safety, tolerability, and pharmacokinetics of single ascending doses of synthetic genistein (Bonistein) in healthy volunteers. Adv. Ther., 22, 65-78 (2005). https://doi.org/10.1007/BF02850186
- Vasquez-Martinez, Y., Ohri, R.V., Kenyon, V., Holman, T.R., and Sepulveda-Boza, S., Structure-activity relationship studies of flavonoids as potent inhibitors of human platelet 12-hLO, reticulocyte 15hLO-1, and prostate epithelial 15hLO-2. Bioorg. Med. Chem., 15, 7408-7425 (2007). https://doi.org/10.1016/j.bmc.2007.07.036
- Viola, H., Marder, M., Wasowski, C., Giorgi, O., Paladini, A.C., and Medina, J.H., 6,3'-Dibromoflavone and 6-nitro-3'-bromoflavone: New additions to the 6,3'-disubstituted flavone family of high-affinity ligands of the brain benzodiazepine binding site with agonistic properties. Biochem. Biophys. Res. Comm., 273, 694-698 (2000). https://doi.org/10.1006/bbrc.2000.2979
-
Wu, E.S.C., Cole, T.E., Davidson, T.A., Blosser, J.C., Borrelli, A.R., Kingsolving, C.R., and Parker, R.B., Flavones. I. Synthesis and antihypertensive activity of 3-phenylflavone-oxopropanolamines without
$\beta$ -adrenergic receptor antagonism. J. Med. Chem., 30, 788-792 (1987). https://doi.org/10.1021/jm00388a007 - Wu, E.S.C., Loch, J.T., Toder, B.H., Borrelli, A.R., Gawlak, D., Radov, L.A., and Gensmantel, N.P., Flavones. 3. Synthesis, biological activities, and conformational analysis of isoflavone derivatives and related compounds. J. Med. Chem., 35, 3519-3525 (1992). https://doi.org/10.1021/jm00097a009
- Yahiaoui, S., Fagnere, C., Pouget, C., Buxeraud, J., and Chulia, A.-J., New 7,8-benzoflavanones as potent aromatase inhibitors: Synthesis and biological evaluation. Bioorg. Med. Chem., 16, 1474-1480 (2008). https://doi.org/10.1016/j.bmc.2007.10.057
- Yamada, H., Tateishi, M., Harada, K., Ohashi, T., Shimizu, T., Atsumi, T., Komagata, Y., Iijima, H., Komiyama, K., Watanabe, H., Hara, Y., and Ohashi, K., A randomized clinical study of tea catechin inhalation effects on methicillin-resistant Staphylococcus aureus in disabled elderly patients. J. Am. Med. Dir. Assoc., 7, 79-83 (2006). https://doi.org/10.1016/j.jamda.2005.06.002
-
Yarishkin, O.V., Ryu, H.W., Park, J.-Y., Yang, M.S., Hong, S.-G., and Park, K.H., Sulfonate chalcone as new class voltage-dependent
$K^{+}$ channel blocker. Bioorg. Med. Chem. Lett., 18, 137-140 (2008). https://doi.org/10.1016/j.bmcl.2007.10.114