Caesalpinia sappan L. Induces G2/M Phase Cell Cycle Arrest in Human Lymphoma U937 Cells

소목(蘇木) 물추출물의 G2/M기 정지를 통한 U937세포의 성장억제 효과

  • Jeon, Byung-Jae (Department of Pathology, College of Oriental Medicine, Wonkwang Unviersity) ;
  • Ju, Sung-Min (Department of Pathology, College of Oriental Medicine, Wonkwang Unviersity) ;
  • Yang, Hyun-Mo (Department of Pathology, College of Oriental Medicine, Wonkwang Unviersity) ;
  • Kim, Bo-Hyun (Division of Natural Science, College of Natural Sciences, Wonkwang Unviersity) ;
  • Kim, Won-Sin (Division of Natural Science, College of Natural Sciences, Wonkwang Unviersity) ;
  • Jeon, Byung-Hun (Department of Pathology, College of Oriental Medicine, Wonkwang Unviersity)
  • 전병제 (원광대학교 한의과대학 병리학교실) ;
  • 주성민 (원광대학교 한의과대학 병리학교실) ;
  • 양현모 (원광대학교 한의과대학 병리학교실) ;
  • 김보현 (원광대학교 자연과학대학 생명과학부) ;
  • 김원신 (원광대학교 자연과학대학 생명과학부) ;
  • 전병훈 (원광대학교 한의과대학 병리학교실)
  • Received : 2010.01.11
  • Accepted : 2010.02.12
  • Published : 2010.02.25

Abstract

Caesalpinia sappan L. (C. sappan) has long been used in traditional medicine as an emmenagogue, hemostatic and anti-inflammatory agent. The present study investigated the effects of water extract of C. sappan in human lymphoma U937 cells. The proliferation of U937 cells was decreased by C. sappan in a dose-dependently manner. Anti-proliferative effect of C. sappan on U937 cells was associated with G2/M phase arrest, which was mediated by regulating the expression of p21 protein. Moreover, phosphorylation of JNK and p38 was increased by C. sappan. Blockade of JNK and p38 was significantly inhibited C. sappan-induced G2/M phase arrest. Taken together, these results suggest that Anti-proliferative effect of C. sappan on U937 is assocated with G2/M phase cell cycle arrest by expression of p21 protein and, JNK and p38 activation.

Keywords

References

  1. 장진섭, 신민교. 도해. 생약대사전, pp 666-667, 1990.
  2. 김창민 외. 중약대사전. 청담출판사, pp 2420-2423, 1997.
  3. Park, K.J., Kim, E.H., Eun, Y.A., Kang, B.J. and sung, H.J. Cytotoxic effect of Korean traditional prescription on the human gastric cancer cell lines. Kor. J. Pharmacogn. 28: 233-238, 1997.
  4. Lim, D.K., Choi, L.U. and Shin, D.H. Antioxidative activity of some solvent extract from Caesalpinia sappan L. Kor. J. Food Sci. Technol. 28: 77-82, 1996.
  5. Kim, Y.S., Noh, Y.K., Lee, G.I., Kim, Y.K., Lee, K.S. and Min, K.R. Inhibitory effects of herbal medicines on hyaluronidase activity. Kor. J. Pharmacogn. 26: 265-272, 1995.
  6. Jeon, W.K., Park, K.J., Kim, S.Y., Ma, J.Y. and Sung, H.J. In vitro studies on the anticancer effect and topoisomerase I inhibition activity of Caesalpinia sappan L. extract. Kor. J. pharmacogn. 30: 1-6, 1999.
  7. Moon, C.K., Chung, J.H., Lee, Y.M., Lee, S.H., Hwang, G.S., Park, K.S., Mook, M.S., Kim, S.G., Ahn, Y.S. and Ann, J.H. Effects of Brazilin on erythrocyte deformability and its regulated biochemical factors in streptozotocin induced diabetic rats, Arch. Pharm, Res. 11: 149-154, 1988. https://doi.org/10.1007/BF02857719
  8. Moon, C.K., Park, K.S., Kim, S.G., Won, H.S. and Chung, J.H. Brazilin protects cultured rat hepatocytes from BrCCl3- induced toxicity. Drug Chem. Toxicol. 15: 81-91, 1992. https://doi.org/10.3109/01480549209035174
  9. Hwang, G.S., Kim, J.Y., Chang, T.S., Jeon, S.D., SO, D.S. and Moon, C.K. Effects of Brazilin on the phopholipase A2 activity and changes of intracellular free calcium concentration in rat platelets. Arch. Pharm. Res. 21: 774-778, 1998. https://doi.org/10.1007/BF02976775
  10. Kim, S.G., Kim, Y.M., Khil, L.Y., Jeon, S.D., So, D.S., Moon, C.H. and Moon, C.K. Brazilin inhibits activities of protein kinase C and insulin receptor serine kinase in rat liver. Arch. Pharm. Res. 21: 140-146, 1998. https://doi.org/10.1007/BF02974018
  11. 이강대, 김정하. brazilin as a new sunless tanning agent. 대한화장품학회지 23: 81-85, 1997.
  12. 전국한의학과대학 본초학 교수 공편저(강병수 외). 본초학. 도서출판 영림사, p 299, 2000.
  13. 이상인 외. 한약임상응용. 전통의학연구원, p 438, 1998.
  14. Koeffler, H.P. Induction of differentiation of human acute myelogenous leukemia cells: Therapeutic implication. Blood, 62: 709-721, 1983.
  15. Kim, J.I., Lee, S.H., Park, J.H., Park, H.J. and Lee, K.T. Induction of differentiation on the human histocytic lymphoma cell line U-937 by Costunolide. Kor. J. Pharmacogn. 30: 7-11, 1999.
  16. Covacci, V., Bruzzese, N., Sgambato, A., Di Francesco, A., Russo, M.A., Wolf, F.I. and Cittadini, A. Magnesium restriction induces granulocytic differentiation and expression of p27Kip1 in human leukemic HL-60 cells. J. Cell Biochem. 70: 313-322, 1998. https://doi.org/10.1002/(SICI)1097-4644(19980901)70:3<313::AID-JCB4>3.0.CO;2-Q
  17. Sherr, C.J. and Roberts, J.M. Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9: 1149-1163, 1995. https://doi.org/10.1101/gad.9.10.1149
  18. Brugarolas, J., Chandrasekaran, C., Gordon, J.I., Beach, D., Jacks, T. and Hannon, G.J. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552-557, 1995. https://doi.org/10.1038/377552a0
  19. Furukawa, Y., Uenoyama, S., Ohta, M., Tsunoda, A., Griffin, J.D. and Saito, M. Transforming growth factor-beta inhibits phosphorylation of the retinoblastoma susceptibility gene product in human monocytic leukemia cell line JOSK-I. J. Biol. Chem. 267: 17121-17127, 1992.
  20. Hui, E.K. and Yung, B.Y. Cell cycle phase-dependent effect of retinoic acid on the induction of granulocytic differentiation in HL-60 promyelocytic leukemia cells. Evidence for sphinganine potentiation of retinoic acid-induced differentiation. FEBS Lett. 318: 193-199, 1993. https://doi.org/10.1016/0014-5793(93)80020-U
  21. Cooper, S. Revisiting the relationship of the mammalian G1 phase to cell differentiation. J. Theor. Biol. 208: 399-402, 2001. https://doi.org/10.1006/jtbi.2000.2228
  22. Wang, Q.M., Jones, J.B. and Studzinski, G.P. Cyclin-dependent kinase inhibitor p27 as a mediator of the G1-S phase block induced by 1,25-dihydroxyvitamin D3 in HL60 cells. Cancer Res. 56: 264-267, 1996.
  23. Futamura, M., Monden, Y., Okabe, T., Fujita-Yoshigaki, J., Yokoyama, S. and Nishimura, S. Trichostatin A inhibits both ras-induced neurite outgrowth of PC12 cells and morphological transformation of NIH3T3 cells. Oncogene 10: 1119-1123, 1995.
  24. Parker, S.B., Eichele, G., Zhang, P., Rawls, A., Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W. and Elledge, S.J. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024-1027, 1995. https://doi.org/10.1126/science.7863329
  25. Zhang, W., Grasso, L., McClain, C.D., Gambel, A.M., Cha, Y., Travali, S., Deisseroth, A.B. and Mercer, W.E. p53-independent induction of WAF1/CIP1 in human leukemia cells is correlated with growth arrest accompanying monocyte/macrophage differentiation. Cancer Res. 55: 668-674, 1995.
  26. Wada, T. and Penninger, J.M. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838-2849, 2004. https://doi.org/10.1038/sj.onc.1207556
  27. Guyton, K.Z., Liu, Y., Gorospe, M., Xu, Q. and Holbrook, N.J. Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem. 271: 4138-4142, 1996. https://doi.org/10.1074/jbc.271.8.4138
  28. Yoshizumi, M., Tsuchiya, K. and Tamaki, T. Signal transduction of reactive oxygen species and mitogenactivated protein kinases in cardiovascular disease. J. Med. Invest. 48: 11-24, 2001.
  29. Ramachandiran, S., Huang, Q., Dong, J., Lau, S.S. and Monks, T.J. Mitogen-activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem. Res. Toxicol. 15: 1635-1642, 2002. https://doi.org/10.1021/tx0200663
  30. Dabrowski, A., Boguslowicz, C., Dabrowska, M., Tribillo, I. and Gabryelewicz, A. Reactive oxygen species activate mitogen-activated protein kinases in pancreatic acinar cells. Pancreas 21: 376-384, 2000. https://doi.org/10.1097/00006676-200011000-00008
  31. Kannan, K. and Jain, S.K. Oxidative stress and apoptosis. Pathophysiology 7: 153-163, 2000. https://doi.org/10.1016/S0928-4680(00)00053-5
  32. Feuerstein, G.Z. and Young, P.R. Apoptosis in cardiac diseases: stress- and mitogen-activated signaling pathways. Cardiovasc. Res. 45: 560-569, 2000. https://doi.org/10.1016/S0008-6363(99)00372-7
  33. Guadagno, T.M., Ferrell, J.E.Jr. Requirement for MAPK activation for normal mitotic progression in Xenopus egg extracts. Science 282: 1312-1315, 1998. https://doi.org/10.1126/science.282.5392.1312
  34. Wright, J.H., Munar, E., Jameson, D.R., Andreassen, P.R., Margolis, R.L., Seger, R., Krebs, E.G. Mitogen-activated protein kinase kinase activity is required for the G(2)/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 96: 11335-11340, 1996.
  35. Bulavin, D.V., Higashimoto, Y., Popoff, I.J., Gaarde, W.A., Basrur, V., Potapova, O., Appella, E., Fornace, A.J.Jr. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411: 102-107, 2001. https://doi.org/10.1038/35075107
  36. Wang, X., McGowan, C.H., Zhao, M., He, L., Downey, J.S., Fearns, C., Wang, Y., Huang, S., Han, J. Involvement of the MKK6-p38gamma cascade in gamma-radiation-induced cell cycle arrest. Mol. Cell. Biol. 20: 4543-4552, 2000. https://doi.org/10.1128/MCB.20.13.4543-4552.2000
  37. Lee, S.J., Kim, S.K., Choi, W.S., Kim, W.J. and Moon, S.K. Cordycepin causes p21WAF1-mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Toxicol. Lett. 189: 145-151, 2009. https://doi.org/10.1016/j.toxlet.2009.05.014
  38. Zhu, N., Shao, Y., Xu, L., Yu, L. and Sun, L. Gadd45-alpha and Gadd45-gamma utilize p38 and JNK signaling pathways to induce cell cycle G2/M arrest in Hep-G2 hepatoma cells. Mol. Biol. Rep. 36: 2075-2085, 2009. https://doi.org/10.1007/s11033-008-9419-9