사면의 구역 및 절리의 연장성을 고려한 암반사면의 안정성 확률해석

Probability Analysis of Rock Slope Stability using Zoning and Discontinuity Persistence as Parameters

  • 장보안 (강원대학교 지구물리학과) ;
  • 성숙경 (강원대학교 지구물리학과) ;
  • 장현식 (강원대학교 지구물리학과)
  • Jang, Bo-An (Department of Geophysics, Kangwon National University) ;
  • Sung, Suk-Kyung (Department of Geophysics, Kangwon National University) ;
  • Jang, Hyun-Sic (Department of Geophysics, Kangwon National University)
  • 투고 : 2010.04.07
  • 심사 : 2010.05.27
  • 발행 : 2010.06.30

초록

사면의 안정성 분석에 결정론적인 방법이 최근까지 많이 사용되어 왔으나, 암반의 불확실성과 가변성을 고려하는 확률론적인 방법이 더욱 효과적인 것으로 알려지면서 확률론적인 방법의 사용이 점차 증가하는 추세이다. 그러나 현재까지의 방법들은 절리의 특성이나 암반의 풍화 특성 등과 같은 암반의 특성이 사면 전체에서 균질한 것으로 가정하고 있으며, 암반 사면의 파괴에 가장 결정적인 변수인 절리의 연장성을 고려하지 않은 상태에서 안전율 혹은 파괴확률을 계산하여 사면의 안정성을 분석하고 있어서 정확한 사면 안정성 분석에 한계를 보이고 있는 실정이다. 이 연구에서는 모델 사면을 설정한 후, 사면이 균질하다고 가정한 경우와 사면을 암반 및 절리의 상태에 따라 구역으로 분할한 경우의 파괴확률을 계산하여 비교하였고, 또한 위의 각각의 경우에 절리의 연장성을 변수로 고려한 파괴확률을 계산하였다. 또한 강원도 홍천군에 위치한 사면을 구역으로 분할한 후 절리의 연장성을 고려한 파괴확률을 계산하여 모델 분석의 적용성을 검증하였다.

In analysis of slope stability, deterministic analysis which yields a factor of safety has been used until recently. However, probability of failure is considered as a more efficient method because it deals with the uncertainty and variability of rock mass. In both methods, a factor of safety or a probability of failure is calculated for a slope although characteristics of rock mass, such as characteristics of joints, weathering degree of rock and so on, are not uniform throughout the slope. In this paper, we divided a model slope into several zones depending on conditions of rock mass and joints, and probabilities of failure in each zone are calculated and compared with that calculated in whole slope. The persistence of joint was also used as a parameter in calculation of probability of failure. A rock slope located in Hongcheon, Gangwondo was selected and the probability of failure using zoning and persistence as parameter was calculated to confirm the applicability of model analysis.

키워드

참고문헌

  1. 배규진, 박혁진, 2002, 불연속면의 확률특성을 고려한 암반사면의 평면파괴확률 산정, 한국지반공학회지, 18, 97-105.
  2. 윤우현, 천병식, 2003, 불연속면의 비선형 전단강도를 이용한 암반사면 쐐기파괴 확률 해석, 한국지반공학회지, 19, 151-160.
  3. Baecher, G. B., 1983, Statistical analysis of rock mass fracturing, J. Math. Geol., 15, 329-348. https://doi.org/10.1007/BF01036074
  4. Barton, N. R., 1973, Review of a new shear strength criterion for rock joints, Eng. Geol., 7, 287-332. https://doi.org/10.1016/0013-7952(73)90013-6
  5. Barton, N. R. and Choubey, V., 1977, The shear strength of rock joints in theory and practice, Rock Mech., 10, 1-54. https://doi.org/10.1007/BF01261801
  6. Cruden, D. M., 1977, Describing the size of discontinuities, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 14, 133-137. https://doi.org/10.1016/0148-9062(77)90004-3
  7. Feng, P. and Lajtai, E. Z., 1998, Probabilistic treatment of the sliding wedge with EZSlide, Eng. Geol., 50, 153-163. https://doi.org/10.1016/S0013-7952(98)00007-6
  8. Goodman, R. E., 1970, The deformability of joints, in determination of the in-situ modulus of deformation of rock, Amer. Soc. Testing and Mat. Special Tech. Pub., 477, 174-196.
  9. Hoek, E., 2000, Rock engineering; Course notes by E. Hoek [Online], Available: http://www.rocscience.com/hoek/PracticalRockEngineering.asp.
  10. Hoek, E. and Bray, J., 1981, Rock slope engineering, Inst. Min. Metal., London, 358p.
  11. Hudson, J. A. and Priest, S. D., 1979, Discontinuities and rock mass geometry, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 16, 339-362. https://doi.org/10.1016/0148-9062(79)90001-9
  12. Kim, H. and Major, G., 1978, Application of Monte Carlo techniques to slope stability analysis, Proc. 19th U. S. Symp. Rock Mech., Reno, Nevada, 28-39.
  13. Kulatilake, P. H. S. W., Finley, R. E., and Ghosh, A., 1985, Effect of variability of joint orientation and strength on factor of safety of wedge stability, Proc. Int. Symp. Fund. Rock Joints, Bjorkliden, Lapland, Sweden, 25-34.
  14. Kulatilake, P. H. S. W. and Wu, T. H., 1984, Estimation of mean trace length of discontinuities, Rock Mech. Rock Eng., 17, 215-232. https://doi.org/10.1007/BF01032335
  15. Low, B. K., 1997, Reliability analysis of rock wedges, J. Geotech. Geoenv. Eng., 123, 498-505. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:6(498)
  16. Lumb, P., 1966, The variability of natural soils, Can. Geotech. J., 3, 74-97. https://doi.org/10.1139/t66-009
  17. Major, G., Ross-Brown, D., and Kim, H., 1978, A general probability analysis for three dimensional wedge failure, Proc. 19th U. S. Symp. Rock Mech., Reno, Nevada, 45-56.
  18. Mauldon, M., 1998, Estimating mean fracture trace length and density from observation in convex windows, Rock Mech. Rock Eng., 31, 201-216. https://doi.org/10.1007/s006030050021
  19. Mauldon, M., Dunne, W. M., and Rohrbaugh, M. B., 2001, Circular scanlines and circular windows; new tools for characterizing the geometry of fracture traces, J. Struc. Geol., 23, 247-258. https://doi.org/10.1016/S0191-8141(00)00094-8
  20. Mostyn, G. R. and Li, K. S., 1993, Probabilistic slope analysis-state of play, Proc. Conf. Prob. Methods in Geotech. Eng., Canberra, Australia, 89-109.
  21. Muralha, J., 1991, A probabilistic approach to the stability of rock slope, 7th Cong. ISRM, Aachen, Germany, 921-927.
  22. Muralha, J. and Trunk, U., 1993, Stability of rock blocks- Evaluation of failure probabilities by the Monte Carlo and first order reliability methods, Int. Symp. Assess. Prev. Failure Phenom. in Rock Eng., Istanbul, Turkey, 759-765.
  23. Narr, W. and Suppe, J., 1991, Joint spacing in sedimentary rocks, J. Struc. Geol., 13, 1037-1048. https://doi.org/10.1016/0191-8141(91)90055-N
  24. Nilsen, B., 2000, New trends in rock slope stability analyses, Bull. Eng. Geol. Env., 58, 173-178. https://doi.org/10.1007/s100640050072
  25. Pahl, P. H., 1981, Estimating the mean length of discontinuity traces, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 18, 221-228. https://doi.org/10.1016/0148-9062(81)90976-1
  26. Park, H. J. and West, T. R., 2001, Development of a probabilistic approach for rock wedge failure, Eng. Geol., 59, 233-251. https://doi.org/10.1016/S0013-7952(00)00076-4
  27. Pathak, S. and Nilen, B., 2004, Probabilistic rock slope stability analysis for Himalayan condition, Bull. Eng. Geol. Env., 63, 25-32. https://doi.org/10.1007/s10064-003-0226-1
  28. Patton, F. D., 1966, Multiple modes of shear failure in rock, Proc. 1st Int. Congr. of Rock Mech., Lisbon, 1, 509-513.
  29. Priest, S. D., 1993, Discontinuity analysis for rock engineering, Chapman & Hall, New York, 473p.
  30. Priest, S. D. and Brown, E. T., 1983, Probabilistic stability analysis of variable rock slopes, Trans. Inst. Min. & Metall., 92p.
  31. Priest, S. D. and Hudson, J. A., 1981, Estimation of discontinuity spacing and trace lengths using scanline surveys, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 18, 183-197. https://doi.org/10.1016/0148-9062(81)90973-6
  32. Richarts, L. R., Leg, G. M. M. and Whittle, R. A., 1978, Appraisal of stability conditions in rock slopes, In Found. Eng. in Diff. Ground, ed. by Bell, F. G., Newnes-Butterworths, London, 192-228.
  33. Tabba, M. M., 1984, Deterministic versus risk analysis of slope stability, Proc. 4th Int. Symp. Landslides, 491-498.
  34. Tobutt, D. C., 1982, Monte Carlo simulation for slope stability, Comp. Geosci., 8, 199-209. https://doi.org/10.1016/0098-3004(82)90021-8
  35. Villaescusa, E. and Brown, E. T., 1992, Maximum likelihood estimation of joint size from trace length measurement, Rock Mech. Rock Eng., 25, 67-87. https://doi.org/10.1007/BF01040513
  36. Wallis, P. F. and King, M. S., 1980, Discontinuity spacings in a crystalline rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 17, 63-66. https://doi.org/10.1016/0148-9062(80)90007-8