DOI QR코드

DOI QR Code

Antioxidants Activity of Aged Red Garlic

숙성 홍마늘의 생리활성

  • Lee, Soo-Jung (Department of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Shin, Jung-Hye (Namhae Garlic Research Institute) ;
  • Kang, Min-Jung (Namhae Garlic Research Institute) ;
  • Jung, Woo-Jae (Namhae Garlic Research Institute) ;
  • Ryu, Ji-Hyun (Department of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Kim, Ra-Jeong (Department of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University) ;
  • Sung, Nak-Ju (Department of Food Science and Nutrition, Institute of Agriculture and Life Sciences, Gyeongsang National University)
  • 이수정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 신정혜 ((재)남해마늘연구소) ;
  • 강민정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 정우재 ((재)남해마늘연구소) ;
  • 류지현 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 김라정 (경상대학교 식품영양학과.농업생명과학연구원) ;
  • 성낙주 (경상대학교 식품영양학과.농업생명과학연구원)
  • Received : 2010.04.20
  • Accepted : 2010.05.19
  • Published : 2010.05.31

Abstract

The antioxidant activities of hot water extracts from fresh, red and black garlic processed in low temperatures were compared. The chromaticity value of browning garlic was between that of fresh and black garlic. Red garlic was similar in browning intensity to fresh garlic. Also, total phenol, flavonoids, total pyruvate and thiosulfate contents were similar between fresh and black garlic. DPPH, ABTs, NO radical scavenging activity and reducing power of red garlic were significantly higher than fresh garlic, but lower than those of black garlic. $\alpha$-Glucosidase inhibitory activity in red garlic was similar to that in black garlic. Antioxidant activities of red garlic were higher than fresh garlic but lower than black garlic, and it was confirmed that antioxidant activity by production of browning material through the thermal process was the main parameter of the biological activity in the aged red garlic.

흑마늘의 진한 흑색을 완화시킴과 동시에 생마늘보다는 생리활성이 높은 마늘 가공품의 개발을 위한 연구의 일환으로 적갈색 마늘(홍마늘)을 제조하여 열수추출물의 생리활성을 생마늘 및 흑마늘과 비교하였다. 홍마늘의 색도는 생마늘과 흑마늘의 중간 색도를 보였으며, 갈색도는 흑마늘보다는 생마늘과 비슷한 수준이었다. 홍마늘의 총 페놀, 플라보노이드, total pyruvate 및 thiosulfate 함량도 생마늘과 흑마늘의 중간수준이었다. DPPH, ABTs 및 NO 라디칼 소거능과 환원력의 측정 결과 홍마늘은 생마늘보다 유의적으로 높았으나, 흑마늘보다는 낮은 활성을 보였다. $\alpha$- Glucosidase 저해 활성은 홍마늘과 흑마늘이 비슷한 활성으로 보였다. 항산화 활성을 중심으로 한 생리활성의 측정에서 홍마늘은 생마늘에 비해 더 높았으나 흑마늘에 비해서는 더 낮아 열처리를 통한 갈변물질의 생성정도가 숙성마늘의 생리활성 발현의 주요 인자임을 확인할 수 있었다.

Keywords

References

  1. Bae, S. K. and M. R. Lim. 2002. Effects of sodium metabisulfite and adipic acid on red of garlic juice concentrate during storage. Korean J. Soc. Food Cookery Sci. 18, 73-80.
  2. Bell, D. S. 2004. Type 2 diabetes mellitus: What in the optimal treatment regimen? Am. J. Med. 116, 23S-29S. https://doi.org/10.1016/j.amjmed.2003.10.017
  3. Bertozzi, C. R. and L. L. Kiessling. 2001. Chemical glycobiology. Science 23, 2357-2364.
  4. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  5. Byun, P. H., W. J. Kim and S. K. Yoon. 2001. Changes of functional properties of garlic extracts during storage. Korean J. Food Sci. Technol. 33, 301-306.
  6. Cavagnaro, P. F., D. Senalik, C. R. Galmarini, and P. W. Simon. 2005. Correlation of pungency, thiosulfinates, antiplatelet activity and total soluble solids in two garlic families. American Society for Horticultural Sciences Annual Conference, Las Vegas, Nevada, Hortscience 40, p. 1019.
  7. Choe, M., D. J. Kim, H. J. Lee, J. K. You, D. J. Seo, J. H. Lee, and M. J. Chung. 2008. A study on the glucose regulating enzymes and antioxidant activities of water extracts from medicinal herbs. J. Korean Soc. Food Sci. Nutr. 37, 542-547. https://doi.org/10.3746/jkfn.2008.37.5.542
  8. Choi, D. J., S. J. Lee, M. J. Kang, H. S. Cho, N. J. Sung, and J. H. Shin. 2008. Physicochemical characteristics of black garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 37, 465-471. https://doi.org/10.3746/jkfn.2008.37.4.465
  9. Choi, J. H., W. J. Kim, J. W. Yang, H. S. Sung, and S. K. Hong. 1981. Quality changes in red ginseng extract during high temperature storage. J. Korean Agric. Chem. Soc. 24, 50-58.
  10. Ding, A. H., C. F. Nathan, and D. J. Stuhr. 1988. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. J. Immunol. 141, 2407-2412.
  11. Freeman, G. G. and F. Mcbreen. 1973. A rapid spectrophotometric methods of determination of thiosulfinate in onion and its significance in flavor studies. Biochem. Soc. Trans. 1, 1150-1154.
  12. Gordon, M. H. 1990. The mechanism of antioxidant action in vitro. In Food Antioxidant. pp. 1-18, In Hudson, B. J. F. (ed.), Elsevier Applied Science, London/New York.
  13. Gutfinger, T. 1981. Polyphenols in olive oils. J. A. O. C. S. 58, 966-967. https://doi.org/10.1007/BF02659771
  14. Kang, Y. H., Y. K. Park, S. R. Oh, and K. D. Moon. 1995. Studies on the physiological functionality of pine needle and mugwort extracts. Korean J. Food Sci. Technol. 27, 978-984.
  15. Katsuzi, N, M. H. Park, S. D. Ha, and G. H. Kim. 2000. Effects of garlic extract for protecting the infection of influenza virus. J. Korean Soc. Food Nutr. 29, 128-133.
  16. Kim, S. D., J. H. Do, and H. I. Oh. 1981. Antioxidant activity of Panax ginseng red products. J. Korean Agric. Chem. Soc. 24, 161-166.
  17. Kim, H. K., H. J. Kwak, and K. H. Kim. 2002. Physiological activity and antioxidative effect of garlic (Allium sativum L.) extract. Food Sci. Biotechnol. 11, 500-506.
  18. Lawson, L. D., S. G. Wood, and B. G. Hughes. 1991. HPLC analysis of allicin and other thiosulfinates in garlic glove homogenates. Planta Med. 57, 263-270. https://doi.org/10.1055/s-2006-960087
  19. Lee, J. W., H. R. Ko, and K. H. Shim. 1998. Structural characteristics of the water soluble red reaction products isolated from Korean red ginseng. Korean J. Food & Nutr. 11, 499-505.
  20. Lee, J. W. and J. H. Do. 2006. Current studies on red reaction products and acidic polysaccharide in Korean red ginseng. J. Ginseng Res. 30, 41-48. https://doi.org/10.5142/JGR.2006.30.1.041
  21. Lee, J. H. and H. K. Koh. 1996. Drying characteristics of garlic. J. Biosystems. Eng. 21, 72-83.
  22. Lee, J. W., S. K. Lee, J. H. Do, H. S. Sung, and K. H. Shim. 1995. Red reaction of fresh ginseng (Panax ginseng C. A. Meyer) as affected by heating temperature. Korean J. Ginseng Sci. 19, 249-253.
  23. Lee, S. J., N. J. Sung, H. G. Jeong, J. H. Shin, Y. C. Chung, and J. K. Seo. 2008. Antioxidant activities of methanol extracts from Prunella vulgaris. J. Korean Soc. Food Sci. Nutr. 37: 1535-1541. https://doi.org/10.3746/jkfn.2008.37.12.1535
  24. Lertittikul, W., S. Benjakul, and M. Tanaka. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH. Food Chem. 100, 669-677. https://doi.org/10.1016/j.foodchem.2005.09.085
  25. Liu, C. T., H. Hse, C. K. Lii, P. S. Chen, and L. Y. Sheen. 2005. Effects of garlic oil and diallyl trisulfide on glycemic control in diabetic rats. Eur. J. Pharmacol. 516, 165-173. https://doi.org/10.1016/j.ejphar.2005.04.031
  26. Liu, C. T., P. L. Wong, C. K. Lii, H. Hse, and L. Y. Sheen. 2006. Antidiabetic effect of garlic oil but not diallyl disulfide in rats with streptozotocin-induced diabetes. Food Chem. Toxicol. 44, 1377-1384. https://doi.org/10.1016/j.fct.2005.07.013
  27. Moreno, M. I. N., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Enthropharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  28. Moreno, F. J., M. Corzo-martinez, M. D. Castillo, and M. Villamiel. 2006. Changes in antioxidant activity of dehydrated onion and garlic during storage. Food Res. Int. 39, 891-897. https://doi.org/10.1016/j.foodres.2006.03.012
  29. Nuttakaan, L., R. Viboon, C. Nantaya, and M. G. Janusz. 2006. Quantitative evaluation of the antioxidant properties of garlic and shallot preparation. Nutrition 22, 266-274. https://doi.org/10.1016/j.nut.2005.05.010
  30. Oyaizu, M. 1986. Studies on products of red reactions: antioxidative activities of products of red reaction prepared from glucosamine. Japanese J. Nutr. 44, 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  31. Re, R., N. Pellegrini, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTs radical cation decolorization assay. Free Radical Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Schwimmer, S. and W. J. Weston. 1961. Onion flavor and odor, enzymatic development of pyruvic acid in onion as a measure of pungency. J. Anal. Food Chem. 9, 301-304. https://doi.org/10.1021/jf60116a018
  33. Shin, J. H., D. J. Choi, M. J. Chung, M. J. Kang, and N. J. Sung. 2008. Changes of physicochemical components and antioxidant activity of aged garlic at different temperatures. J. Korean Soc. Food Sci. Nutr. 37, 1174-1181. https://doi.org/10.3746/jkfn.2008.37.9.1174
  34. Shin, J. H., D. J. Choi, S. J. Lee, J. Y. Cha, J. K. Kim, and N. J. Sung. 2008. Changes of physicochemical components and antioxidant activity of garlic during its processing. J. Life Sci. 18, 1123-1131. https://doi.org/10.5352/JLS.2008.18.8.1123
  35. Shin, J. H., D. J. Choi, S. J. Lee, J. Y. Cha, and N. J. Sung. 2008. Antioxidant activity of black garlic (Allium sativum L.). J. Korean Soc. Food Sci. Nutr. 37, 965-971. https://doi.org/10.3746/jkfn.2008.37.8.965
  36. Song, H. S. and K. Y. Moon. 2006. In vitro antioxidant activity profiles of β-glucans isolated from yeast Saccharomyces cerevisiae and mutant Saccharomyces cerevisiae IS2. Food Sci. Biotechnol. 15, 437-440.
  37. Staba, E. J., L. Lash, and J. E. Staba. 2001. A commentary on the effects of garlic extraction and formulation on product composition. J. Nutr. 131, 1118-1119.
  38. Wang, M. F., Y. Shao, J. G. Yi, N. Q. Zhu, M. Rngarajan, E. J. Lavoic, and C. T. Ho. 1998. Antioxidative phenolic compounds from sage (Salivia officinalis). J. Agric. Food Chem. 46, 4869-4873. https://doi.org/10.1021/jf980614b
  39. Yamaguchi, N. and Y. Koyama. 1967. Studies on the red reaction products yields by reducing sugars and amino acid. Japan J. Food Sci. Technol. 14, 110-113. https://doi.org/10.3136/nskkk1962.14.110
  40. Yang, S. T. 2007. Antioxidative activity of extracts of aged black garlic on oxidation of human low density lipoprotein. J. Life Sci. 17, 1330-1335. https://doi.org/10.5352/JLS.2007.17.10.1330
  41. Yilmaz, Y. and R. Toledo. 2005. Antioxidant activity of water-soluble Maillard reaction products. Food Chem. 93, 273-278. https://doi.org/10.1016/j.foodchem.2004.09.043

Cited by

  1. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages vol.58, 2013, https://doi.org/10.1016/j.fct.2013.04.002
  2. The Physicochemical Characteristics and Antioxidant Properties of Commercial Nurungji Products in Korea vol.32, pp.5, 2016, https://doi.org/10.9724/kfcs.2016.32.5.575
  3. Black Onions Manufactured via the Browning Reaction and Antioxidant Effects of Their Water Extracts vol.18, pp.3, 2011, https://doi.org/10.11002/kjfp.2011.18.3.310
  4. Comparison of Antioxidant Activities of Black Onion Extracts vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.954
  5. Aged Red Garlic Extract Reduces Cigarette Smoke Extract-induced Cell Death in Human Bronchial Smooth Muscle Cells by Increasing Intracellular Glutathione Levels vol.26, pp.1, 2012, https://doi.org/10.1002/ptr.3502
  6. Aged red garlic extract reduces lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophages and acute pulmonary inflammation through haeme oxygenase-1 induction vol.205, pp.1, 2012, https://doi.org/10.1111/j.1748-1716.2012.02425.x
  7. Biological Activity of Browning Compounds from Processed Garlics Separated by Dialysis Membrane vol.40, pp.3, 2011, https://doi.org/10.3746/jkfn.2011.40.3.357
  8. Effects of the Red Garlic Extract for Anti-Obesity and Hypolipidemic in Obese Rats Induced High Fat Diet vol.21, pp.2, 2011, https://doi.org/10.5352/JLS.2011.21.2.211
  9. Antioxidant and Antiobesity Activity of Solvent Fractions from Red Garlic vol.22, pp.7, 2012, https://doi.org/10.5352/JLS.2012.22.7.950
  10. Aged Red Garlic Extract Suppresses Nitric Oxide Production in Lipopolysaccharide-Treated RAW 264.7 Macrophages Through Inhibition of NF-κB vol.18, pp.4, 2015, https://doi.org/10.1089/jmf.2014.3214
  11. Effects of Baked Garlic Powder on Lipid Metabolism in Rats Fed a High-Fat/High-Cholesterol Diet vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.049
  12. Physicochemical Characteristics of Red Garlic During Processing vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.898
  13. Comparison of Anti-Oxidant and Anti-Inflammatory Effects between Fresh and Aged Black Garlic Extracts vol.21, pp.4, 2016, https://doi.org/10.3390/molecules21040430
  14. Antioxidant and antimicrobial activities of black Doraji (Platycodon grandiflorum) vol.20, pp.4, 2013, https://doi.org/10.11002/kjfp.2013.20.4.510
  15. Biological Activities of Yellow Garlic Extract vol.44, pp.7, 2015, https://doi.org/10.3746/jkfn.2015.44.7.983
  16. Oxidative Stress Inhibitory Effects of Low Temperature-Aged Garlic (Allium sativum L.) Extracts through Free Radical Scavenging Activity vol.45, pp.1, 2016, https://doi.org/10.3746/jkfn.2016.45.1.027
  17. Isolation and Identification of Antioxidative Compounds 3,4-Dihydroxybenzoic acid from Black Onion vol.19, pp.2, 2012, https://doi.org/10.11002/kjfp.2012.19.2.229
  18. Changes in quality characteristic of immature flat persimmon (Diospyros kaki Thunb) during heat treatment aging vol.23, pp.3, 2016, https://doi.org/10.11002/kjfp.2016.23.3.301
  19. Effect of Red Garlic-Composites on the Fecal Lipid Level and Hepatic Antioxidant Enzyme Activity in Rats Fed a High Fat-Cholesterol Diet vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.017
  20. Biological Activities of Solid-fermentation Garlic with Lactic Acid Bacteria vol.26, pp.4, 2016, https://doi.org/10.5352/JLS.2016.26.4.446
  21. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review vol.22, pp.6, 2017, https://doi.org/10.3390/molecules22060919
  22. The aqueous extract of aged black garlic ameliorates colistin-induced acute kidney injury in rats vol.41, pp.1, 2019, https://doi.org/10.1080/0886022X.2018.1561375