Acknowledgement
Supported by : NRF
References
- F. Almgren, Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), no. 165, viii+199 pp.
- F. Almgren and J. Taylor, The geometry of soap films and soap bubbles, Scientific American 235 (1976), 82-93. https://doi.org/10.1038/scientificamerican0776-82
- J. Choe, The isoperimetric inequality for minimal surfaces in a Riemannian manifold, J. Reine Angew. Math. 506 (1999), 205-214.
- J. Choe and R. Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math. 77 (1992), no. 2-3, 169-189. https://doi.org/10.1007/BF02567052
- J. Choe and R. Gulliver, Embedded minimal surfaces and total curvature of curves in a manifold, Math. Res. Lett. 10 (2003), no. 2-3, 343-362. https://doi.org/10.4310/MRL.2003.v10.n3.a5
-
T. Ekholm, B. White, and D. Wienholtz, Embeddedness of minimal surfaces with total boundary curvature at most
$4{\pi}$ , Ann. of Math. (2) 155 (2002), no. 1, 209-234. https://doi.org/10.2307/3062155 - H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
- R. Gulliver and S. Yamada, Area density and regularity for soap film-like surfaces spanning graphs, Math. Z. 253 (2006), no. 2, 315-331. https://doi.org/10.1007/s00209-005-0903-9
- D. Kinderlehrer, L. Nirenberg, and J. Spruck, Regularity in elliptic free boundary problems, J. Analyse Math. 34 (1978), 86-119 https://doi.org/10.1007/BF02790009
- O. Ore, Graphs and Their Uses, Random House, New York, 1963.
- L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983. vii+272 pp.
- J. Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. of Math. (2) 103 (1976), no. 3, 489-539. https://doi.org/10.2307/1970949