DOI QR코드

DOI QR Code

Estimation of Genetic Characteristics and Cumulative Power of Discrimination in Korean Native Chicken and Korean Native Commercial Chicken

토종닭 순계와 실용계의 유전적 특성 및 품종식별력 분석

  • Oh, Jae-Don (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Kun-Woo (Genomic Informatics Center, Hankyong National University) ;
  • Seo, Ok-Suk (National Institute of Animal Science) ;
  • Cho, Byung-Wook (School of Bio-Resources, Pusan National University) ;
  • Jeon, Gwang-Joo (Genomic Informatics Center, Hankyong National University) ;
  • Lee, Hak-Kyo (Genomic Informatics Center, Hankyong National University) ;
  • Kong, Hong-Sik (Genomic Informatics Center, Hankyong National University)
  • Received : 2010.04.12
  • Accepted : 2010.07.12
  • Published : 2010.07.30

Abstract

To estimate the genetic characteristics and cumulative power of discrimination (CPD) within Korean native commercial chicken, we used a total of 395 genomic DNAs from six breeds population (Korean Native Red chicken: R, Korean Native Yellow chicken: Y, Korean native Commercial Chicken: C, Ogal chicken: S, Hy-Line Brown: H, White Leghorn: W). Genetic diversity indices including mean allele number among loci, unbiased heterozygosity ($h_i$) within locus, effective number of alleles ($N_e$) and polymorphism information content (PIC) as well as the unbiased average heterozygosity (H) among loci in the populations were calculated using the generated allele frequencies by each marker. Frequencies of microsatellites markers were used to estimate heterozygosities and genetic distances. The nearest distance (0.119) was observed between the C and Y strains. The generated unbiased average heterozygosity among loci in each population was integrated to the global formula of CPD and the result demonstrated that the CPD within the six chicken populations was 99.461%.

본 연구는 토종닭 순계(적갈계통, 황갈계통), 토종닭 실용계와 오골계 및 외래품종(Hy-Line Brown: HB, White Leghorn: WL)을 대상으로 13종의 MS marker (ADL0309, ADL181, ADL190, ADL279, LEI0073, LEI0192, MCW083, MCW120, MCW153, MCW214, MCW217, MCW226, MCW322)을 활용하여 집단 및 품종간의 유전적 다양성을 분석 하였다. 13종의 MS marker 내에서 총 120개의 대립유전자를 확인 하였으며 평균 9.2개의 대립유전자를 보유한 것으로 나타났다. 관측된 이형질성, 기대되는 이형질성 및 PIC의 평균값은 각각 0.63, 0.72 그리고 0.678로 확인되었다. 가장 많은 평균대립유전자를 보유한 집단은 토종닭 실용계집단이 5.9로 확인 되었으며 기대되는 이형질성이 0.629로 비교적 높게 나타났다. 이는 토종닭 순계 집단을 이용한 3원 교잡을 통해 실용계집단을 생산하는 과정에서 기인한 것으로 추정된다. 집단 및 품종간의 유전적 유연관계를 분석한 결과 토종닭 순계집단 (R, Y)과 실용계집단(C)은 서로간에 가까운 유전적 거리를 유지하고 있는 것으로 확인되었다. 각 MS marker별 품종간의 이형접합률을 이용하여 각 개체들의 집단 내에서 품종을 식별 할 수 있는 확률인 누적품종식별력(CPD) 값을 계산한 결과 13종의 MS marker를 이용하여 개체의 품종을 구분할 수 있는 확률이 99.461%로 나타났다.

Keywords

References

  1. Barker, J. S. F., S. G. Tan, O. S. Selvaraj, and T. K. Mukherjee. 1997. Genetic variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anim. Genet. 28, 1-13. https://doi.org/10.1111/j.1365-2052.1997.00036.x
  2. Bjornstad, G., N. O. Nilsen, and K. H. Roed. 2003. Genetic relationship between Mongolian and Norwegian horses. Anim. Genet. 34, 55-58. https://doi.org/10.1046/j.1365-2052.2003.00922.x
  3. Buchanan, F. C., L. J. Adams, R. P. Littlejohn, J. F. Maddox, and A. M. Crawford. 1994. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 22, 397-493. https://doi.org/10.1006/geno.1994.1401
  4. Fan, B., Z. G. Wang, Y. J. Li, X. L. Zhao, B. Liu, S. H. Zhao, M. YU, M. H. Li, S. L. Chen, T. A. Xiong, and K. Li. 2002. Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers. Anim. Genet. 33, 422-427. https://doi.org/10.1046/j.1365-2052.2002.00898.x
  5. Fan, B., Y. Chen, C. Moran, S. Zhao, B. Liu, M. Zhu, T. Xiong, and K. Li. 2005. Individual-breed assignment analysis in swine populations by using microsatellite markers. Asian-Aust. J. Anim. Sci. 18, 1529-1534. https://doi.org/10.5713/ajas.2005.1529
  6. Fries, R. and G. Durstewitz. 2001. Digital DNA signatures: SNPs for animal tagging. Nat. Biotechnol. 19, 508.
  7. Kim, S. W., H. K. Jang, K. S. Kim, J. J. Kim, J. T. Jeon, D. H. Yoon, S. H. Kang, H. I. Jung, and I. C. Cheong. 2009. Establishment of genetic characteristics and individual identification system using microsatellite loci in domestic beef cattle. J. Anim. Sci. Technol. 51, 273-282. https://doi.org/10.5187/JAST.2009.51.4.273
  8. Li, K., Y. Chen, C. Moran, B. Fan, S. Zhao, and Z. Peng. 2000. Analysis of diversity and genetic relationships between four Chinese indigenous pig breeds and one Australian commercial pig breed. Anim. Genet. 31, 322-325. https://doi.org/10.1046/j.1365-2052.2000.00649.x
  9. Lim, H. T., H. S. Min, W. G. Moon, J. B. Lee, J. H. Kim, I. C. Cho, and H. K. Lee. 2005. Analysis and selection of microsatellites markers for individual traceability system in Hanwoo. J. Anim. Sci. Technol. 47, 491-500. https://doi.org/10.5187/JAST.2005.47.4.491
  10. Lim, H. T., B. Y. Seo, E. J. Jung, C. K. Yoo, T. Zhong, I. C. Cho, D. H. Yoon, J. G. Lee, and J. T. Jeon. 2009. Establishment of a microsatellite marker set for individual, pork brand and product origin identification in pigs. J. Anim. Sci. Technol. 51, 201-206. https://doi.org/10.5187/JAST.2009.51.3.201
  11. Martin-Burriel, I., E. Garcia-Muro, and P. Zaragoza. 1999. Genetic diversity analysis of six Spanish native cattle breeds using microsatellites. Anim. Genet. 30, 177-182. https://doi.org/10.1046/j.1365-2052.1999.00437.x
  12. Nei, M., F. Tajima, and Y. Tateno. 1983. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 19, 153-170. https://doi.org/10.1007/BF02300753
  13. Notter, D. R. 1999. The Importance of genetic diversity in livestock populations of the future. J. Anim. Sci. 77, 61-69.
  14. Olowofeso, O., Y. Wang, J. Shen, K. Chen, H. Sheng, P. Zhang, and R. Wu. 2005. Estimation of the cumulative power of discrimination in Haimen chicken populations withen microsatellite markers. Asian-Aust. J. Anim. Sci. 18, 1066-1070. https://doi.org/10.5713/ajas.2005.1066
  15. Ota, T. 1993. DISPAN. Pennsylvania State University, PA. USA.
  16. Park, S. D. E. 2000. Microsatellite Toolkit for MS Excel 97 or 2000. (in personnel communication).
  17. Peelman, L. J., F. Mortiaux, A. Van Zeveren, A. Dansercoer, G. Mommens, F. Coopman, Y. Bouquet, A. Burny, R. Renaville, and D. Portetelle. 1998. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim. Genet. 29, 161-167. https://doi.org/10.1111/j.1365-2052.1998.00280.x
  18. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4, 406-425.
  19. Sancrostoval, M., G. Renald, and Y. Amigues. 2000. Tracabilite individuelle des viandes bovinew a l'aide de marqueurse genetiques. INRA. Prod. Anim. 13, 269-276.
  20. Seo, K. S., Y. M. Cho, and H. K. Lee. 2000. Development of network system for the application of HACCP in livestock production stage. J. Agroinformatics 1, 1-4.

Cited by

  1. Assessment of genetic diversity and phylogenetic relationships of Korean native chicken breeds using microsatellite markers vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0514
  2. Studies on Genetic Diversity and Phylogenetic Relationships of Korean Native Chicken using the Microsatellite Marker vol.42, pp.1, 2015, https://doi.org/10.5536/KJPS.2014.42.1.15
  3. Genome-wide Copy Number Variation in a Korean Native Chicken Breed vol.41, pp.4, 2014, https://doi.org/10.5536/KJPS.2014.41.4.305