DOI QR코드

DOI QR Code

EVALUATION E(exp(∫0th(s)dx(s)) ON ANALOGUE OF WIENER MEASURE SPACE

  • Park, Yeon-Hee (Department of Mathematics Education (Institute of Pure and Applied Mathematics), Chonbuk National University)
  • Received : 2010.07.26
  • Accepted : 2010.08.26
  • Published : 2010.09.25

Abstract

In this paper we evaluate the analogue of Wiener integral ${\int\limits}_{C[0,t]}x(t_1){\cdots}x(t_n)d\omega_\rho(x)$ where 0 = $t_0$ < $t_1$ $\cdots$ < $t_n$ $\leq$ t and the Paley-Wiener-Zygmund integral ${\int\limits}_{C[0,t]}$ exp $({\int\limits}_0^t h(s)\tilde{d}x(s))d\omega_\rho(x)$ is the analogue of Wiener measure space.

Keywords

References

  1. Robert G. Bartle, The Elements of Real Analysis, John Wieley & Sons. Inc., 1976.
  2. D.L.,Cohn, Measure theory, Birkhauser, Boston, 1980.
  3. J. Diestel, and J.J. Uhl, Vecter measures, Mathematical Survey, No. 15, A. M. S., 1977.
  4. Parthasarathy, K.R., Probability measures on metric spaces, Academic Press, New York, 1967.
  5. K.S.Ryu and M.K.Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Sec., vol. 354, no. 12, 2002, 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  6. K.S.Ryu and M.K.Im, An analogue of Wiener measure and its applications, J. Korean Math .Sec., 39. 2002, no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
  7. K.S.Ryu and M.K.Im, The measure-valued Dyson series and its stability theorem, J. Korean Math. Soc., 43. 2006, no. 3, 461-489. https://doi.org/10.4134/JKMS.2006.43.3.461
  8. K.S.Ryu and M.K.Im and K.S.Choi, Survey of the Theories for Analogue of Wiener Measure Space, Interdisciplinary Information Sciences Vol. 15, No.3, 2009, 319-337. https://doi.org/10.4036/iis.2009.319
  9. K.S.Ryu The Generalized Fernique's Theorem for Analogue of Wiener Measure Space, J. Chungcheong Math. Soc., Vol. 22. No. 4, 2009, 743-748.
  10. Yeh, J., Stochastic processes and the Wiener Integral, Marcel Deckker, New York, 1973.

Cited by

  1. Analogues of Conditional Wiener Integrals with Drift and Initial Distribution on a Function Space vol.2014, 2014, https://doi.org/10.1155/2014/916423