References
- Robert G. Bartle, The Elements of Real Analysis, John Wieley & Sons. Inc., 1976.
- D.L.,Cohn, Measure theory, Birkhauser, Boston, 1980.
- J. Diestel, and J.J. Uhl, Vecter measures, Mathematical Survey, No. 15, A. M. S., 1977.
- Parthasarathy, K.R., Probability measures on metric spaces, Academic Press, New York, 1967.
- K.S.Ryu and M.K.Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Sec., vol. 354, no. 12, 2002, 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
- K.S.Ryu and M.K.Im, An analogue of Wiener measure and its applications, J. Korean Math .Sec., 39. 2002, no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
- K.S.Ryu and M.K.Im, The measure-valued Dyson series and its stability theorem, J. Korean Math. Soc., 43. 2006, no. 3, 461-489. https://doi.org/10.4134/JKMS.2006.43.3.461
- K.S.Ryu and M.K.Im and K.S.Choi, Survey of the Theories for Analogue of Wiener Measure Space, Interdisciplinary Information Sciences Vol. 15, No.3, 2009, 319-337. https://doi.org/10.4036/iis.2009.319
- K.S.Ryu The Generalized Fernique's Theorem for Analogue of Wiener Measure Space, J. Chungcheong Math. Soc., Vol. 22. No. 4, 2009, 743-748.
- Yeh, J., Stochastic processes and the Wiener Integral, Marcel Deckker, New York, 1973.
Cited by
- Analogues of Conditional Wiener Integrals with Drift and Initial Distribution on a Function Space vol.2014, 2014, https://doi.org/10.1155/2014/916423