DOI QR코드

DOI QR Code

초포화계획을 평가하기 위한 그래픽방법

Graphical Methods for Evaluating Supersaturated Designs

  • Kim, Youn-Gil (Department of Information Systems, Chung-Ang University) ;
  • Jang, Dae-Heung (Department of Statistics, Pukyong National University)
  • 투고 : 20090800
  • 심사 : 20090900
  • 발행 : 2010.02.28

초록

직교성은 실험계획에서 중요한 개념이다. 실험계획에서 실험점의 개수보다 인자의 개수가 많은 상황에서 우리는 초포화계획을 사용한다. 이러한 초포화계획은 직교성을 만족하지 못하게 되는 데 얼마나 직교성을 만족하는 지를 평가하는 데 우리는 주로 수치적인 측도들을 사용한다. 우리는 초포화계획의 직교성의 정도를 평가하는 방법으로서 그래픽방법을 사용할 수 있다.

The orthogonality is an important property in the experimental designs. We usually use supersaturated designs in case of large factors and small runs. These supersaturated designs do not satisfy the orthogonality. Hence, we need the means for the evaluation of the degree of the orthogonality of given supersaturated designs. We usually use the numerical measures as the means for evaluating the degree of the orthogonality of given supersaturated designs. We can use the graphical methods for evaluating the degree of the orthogonality of given supersaturated designs.

키워드

참고문헌

  1. 장대흥 (2004). 근사직교배열의 직교성의 정도를 평가하기 위한 그래픽방법, <품질경영학회지>, 32, 220-228.
  2. Balkin, S. D. and Lin, D. K. J. (1998). A graphical comparison of supersaturated designs, Communications in Statistics-Theory and Methods, 27, 1289-1303. https://doi.org/10.1080/03610929808832159
  3. Booth, K. H. V. and Cox, D. R. (1962). Some systematic supersaturated designs, Technometrics, 4, 489-495. https://doi.org/10.2307/1266285
  4. Bruno, M. C., Dobrijevic, M., Luu, P. T. and Sergent, M. (2009). A new class of supersaturated designs: Application to a sensitivity study of a photochemical model, Chemometrics and Intelligent Laboratory Systems, 95, 86-93. https://doi.org/10.1016/j.chemolab.2008.09.001
  5. Butler, N. A. (2009). Two-level supersaturated designs for $2^k$ runs and other cases, Journal of Statistical Planning and Inference, 139, 23-29. https://doi.org/10.1016/j.jspi.2008.05.013
  6. Cela, R., Martinez, E. and Carro, A. M. (2000). Supersaturated experimental designs: New approaches to building and using it, Part I. Building optimal supersaturated designs by means of evolutionary algorithms, Chemometrics and Intelligent Laboratory Systems, 52, 167-182. https://doi.org/10.1016/S0169-7439(00)00091-5
  7. Cela, R., Martinez, E. and Carro, A. M. (2001). Supersaturated experimental designs: New approaches to building and using it, Part II. Solving supersaturated designs by genetic algorithms, Chemometrics and Intelligent Laboratory Systems, 57, 75-92. https://doi.org/10.1016/S0169-7439(01)00127-7
  8. Jang, D. H. (2002). Measures for evaluating non-orthogonality of experimental designs, Communications in Statistics-Theory and Methods, 31, 249-260. https://doi.org/10.1081/STA-120002649
  9. Jones, B. A., Nachtsheim, C. J. and Ye, K. Q. (2009). Model-robust supersaturated and partially supersaturated designs, Journal of Statistical Planning and Inference, 139, 45-53. https://doi.org/10.1016/j.jspi.2008.05.015
  10. Koukouvinos, C. and Mylona, K. (2009). Group screening method for the statistical analysis of $E(f_{NOD})-optimal$ mixed-level supersaturated designs, Statistical Methodology, 6, 380-388. https://doi.org/10.1016/j.stamet.2008.12.002
  11. Koukouvinos, C., Mylona, K. and Simos, D. E. (2009). A hybrid SAGA algorithm for the construction of $E(s^2)-optimal$ cyclic supersaturated designs, Statistical Methodology, 6, 380-388. https://doi.org/10.1016/j.stamet.2008.12.002
  12. Li, W. W. and Wu, C. F. J. (1997). Columnwise-pairwise algorithms with applications to the construction of supersaturated designs, Technometrics, 39, 171-179. https://doi.org/10.2307/1270905
  13. Lin, D. K. J. (1995). Generating systematic supersaturated designs, Technometrics, 37, 213-225. https://doi.org/10.2307/1269622
  14. Liu, M. Q. and Zhang L. (2009). An algorithm for constructing mixed-level k-circulant supersaturated designs, Computational Statistics and Data Analysis, 53, 2465-2470. https://doi.org/10.1016/j.csda.2008.12.009
  15. Phoa, F. K. H., Pan, Y. H. and Xu, H. (2009). Analysis of supersaturated designs via Danzig selector, Journal of Statistical Planning and Inference, 139, 2362-2372. https://doi.org/10.1016/j.jspi.2008.10.023
  16. Rais, F., Kamoun, A., Chaabouni, M., Bruno, C., Luu, P. T. and Sergent, M. (2009). Supersaturated design for screening factors influencing the preparation of sulfated amides of olive pomace oil fatty acids, Chemometrics and Intelligent Laboratory Systems, 99, 71-78. https://doi.org/10.1016/j.chemolab.2009.07.015
  17. Sarkar, A., Lin, D. K. J. and Chatterjee, K. (2009). Probability of correct model identification in supersaturated designs, Statistics and Probability Letters, 79, 1224-1230. https://doi.org/10.1016/j.spl.2009.01.017
  18. Wu, C. F. J. (1993). Construction of supersaturated designs through partially aliased interactions, Biometrika, 80, 661-669. https://doi.org/10.1093/biomet/80.3.661

피인용 문헌

  1. Visualization for Experimental Designs vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.893