DOI QR코드

DOI QR Code

THREE-STEP ITERATIVE ALGORITHMS FOR FIXED POINT PROBLEMS AND VARIATIONAL INCLUSION PROBLEMS

  • Cho, Sun-Young (DEPARTMENT OF MATHEMATICS GYEONGSANG NATIONAL UNIVERSITY) ;
  • Hao, Yan (SCHOOL OF MATHEMATICS PHYSICS AND INFORMATION SCIENCE ZHEJIANG OCEAN UNIVERSITY)
  • Received : 2009.08.09
  • Published : 2010.07.31

Abstract

In this paper, a three-step iterative method is considered for finding a common element in the set of fixed points of a non-expansive mapping and in the set of solutions of a variational inclusion problem in a real Hilbert space.

Keywords

References

  1. S. Adly and W. Oettli, Solvability of generalized nonlinear symmetric variational inequalities,J. Austral. Math. Soc. Ser. B 40 (1999), no. 3, 289–300. https://doi.org/10.1017/S0334270000010912
  2. H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5. Notas de Matematica (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
  3. Y. J. Cho, S. M. Kang, and X. Qin, On systems of generalized nonlinear variationalinequalities in Banach spaces, Appl. Math. Comput. 206 (2008), no. 1, 214–220. https://doi.org/10.1016/j.amc.2008.09.005
  4. Y. J. Cho and X. Qin, Generalized systems for relaxed cocoercive variational inequalitiesand projection methods in Hilbert spaces, Math. Inequal. Appl. 12 (2009), no. 2, 365–375.
  5. Y. J. Cho and X. Qin, Systems of generalized nonlinear variational inequalities and its projectionmethods, Nonlinear Anal. 69 (2008), no. 12, 4443–4451. https://doi.org/10.1016/j.na.2007.11.001
  6. Y. J. Cho, X. Qin, and J. I. Kang, Convergence theorems based on hybrid methods forgeneralized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009),no. 9, 4203–4214. https://doi.org/10.1016/j.na.2009.02.106
  7. R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
  8. A. Hamdi, A modified Bregman proximal scheme to minimize the difference of twoconvex functions, Appl. Math. E-Notes 6 (2006), 132–140.
  9. S. Haubruge, V. H. Nguyen, and J. J. Strodiot, Convergence analysis and applicationsof the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximalmonotone operators, J. Optim. Theory Appl. 97 (1998), no. 3, 645–673. https://doi.org/10.1023/A:1022646327085
  10. A. Moudafi, On the difference of two maximal monotone operators: regularization andalgorithmic approaches, Appl. Math. Comput. 202 (2008), no. 2, 446–452. https://doi.org/10.1016/j.amc.2008.01.024
  11. M. A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions,J. Math. Anal. Appl. 255 (2001), no. 2, 589–604. https://doi.org/10.1006/jmaa.2000.7298
  12. M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal.Appl. 331 (2007), no. 2, 810–822. https://doi.org/10.1016/j.jmaa.2006.09.039
  13. M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and variationalinequalities, Appl. Math. Comput. 187 (2007), no. 2, 680–685. https://doi.org/10.1016/j.amc.2006.08.088
  14. M. A. Noor and Z. Huang, Some resolvent iterative methods for variational inclusions and nonexpansivemappings, Appl. Math. Comput. 194 (2007), no. 1, 267–275. https://doi.org/10.1016/j.amc.2007.04.037
  15. M. A. Noor, K. I. Noor, A. Hamdi, and E. H. El-Shemas, On difference of two monotoneoperators, Optim. Lett. 3 (2009), no. 3, 329–335. https://doi.org/10.1007/s11590-008-0112-7
  16. M. A. Noor, T. M. Rassias, and Z. Huang, Three-step iterations for nonlinear accretiveoperator equations, J. Math. Anal. Appl. 274 (2002), no. 1, 59–68. https://doi.org/10.1016/S0022-247X(02)00224-X
  17. X. Qin, Y. Su, and M. Shang, Approximating common fixed points of asymptoticallynonexpansive mappings by composite algorithm in Banach spaces, Cent. Eur. J. Math.5 (2007), no. 2, 345–357. https://doi.org/10.2478/s11533-007-0010-8
  18. S. Reich, Constructive Techniques for Accretive and Monotone Operators, Applied nonlinear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335–345, Academic Press, New York-London, 1979.
  19. M. Shang, Y. Su, and X. Qin, Three-step iterations for nonexpansive mappings andinverse-strongly monotone mappings, J. Syst. Sci. Complex. 22 (2009), no. 2, 333–344. https://doi.org/10.1007/s11424-009-9168-4
  20. B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappingsin Banach spaces, J. Math. Anal. Appl. 267 (2002), no. 2, 444–453. https://doi.org/10.1006/jmaa.2001.7649
  21. Y. Yao and M. A. Noor, On viscosity iterative methods for variational inequalities, J.Math. Anal. Appl. 325 (2007), no. 2, 776–787. https://doi.org/10.1016/j.jmaa.2006.01.091