References
- S. Adly and W. Oettli, Solvability of generalized nonlinear symmetric variational inequalities,J. Austral. Math. Soc. Ser. B 40 (1999), no. 3, 289–300. https://doi.org/10.1017/S0334270000010912
- H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, No. 5. Notas de Matematica (50). North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1973.
- Y. J. Cho, S. M. Kang, and X. Qin, On systems of generalized nonlinear variationalinequalities in Banach spaces, Appl. Math. Comput. 206 (2008), no. 1, 214–220. https://doi.org/10.1016/j.amc.2008.09.005
- Y. J. Cho and X. Qin, Generalized systems for relaxed cocoercive variational inequalitiesand projection methods in Hilbert spaces, Math. Inequal. Appl. 12 (2009), no. 2, 365–375.
- Y. J. Cho and X. Qin, Systems of generalized nonlinear variational inequalities and its projectionmethods, Nonlinear Anal. 69 (2008), no. 12, 4443–4451. https://doi.org/10.1016/j.na.2007.11.001
- Y. J. Cho, X. Qin, and J. I. Kang, Convergence theorems based on hybrid methods forgeneralized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009),no. 9, 4203–4214. https://doi.org/10.1016/j.na.2009.02.106
- R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989.
- A. Hamdi, A modified Bregman proximal scheme to minimize the difference of twoconvex functions, Appl. Math. E-Notes 6 (2006), 132–140.
- S. Haubruge, V. H. Nguyen, and J. J. Strodiot, Convergence analysis and applicationsof the Glowinski-Le Tallec splitting method for finding a zero of the sum of two maximalmonotone operators, J. Optim. Theory Appl. 97 (1998), no. 3, 645–673. https://doi.org/10.1023/A:1022646327085
- A. Moudafi, On the difference of two maximal monotone operators: regularization andalgorithmic approaches, Appl. Math. Comput. 202 (2008), no. 2, 446–452. https://doi.org/10.1016/j.amc.2008.01.024
- M. A. Noor, Three-step iterative algorithms for multivalued quasi variational inclusions,J. Math. Anal. Appl. 255 (2001), no. 2, 589–604. https://doi.org/10.1006/jmaa.2000.7298
- M. A. Noor, General variational inequalities and nonexpansive mappings, J. Math. Anal.Appl. 331 (2007), no. 2, 810–822. https://doi.org/10.1016/j.jmaa.2006.09.039
- M. A. Noor and Z. Huang, Three-step methods for nonexpansive mappings and variationalinequalities, Appl. Math. Comput. 187 (2007), no. 2, 680–685. https://doi.org/10.1016/j.amc.2006.08.088
- M. A. Noor and Z. Huang, Some resolvent iterative methods for variational inclusions and nonexpansivemappings, Appl. Math. Comput. 194 (2007), no. 1, 267–275. https://doi.org/10.1016/j.amc.2007.04.037
- M. A. Noor, K. I. Noor, A. Hamdi, and E. H. El-Shemas, On difference of two monotoneoperators, Optim. Lett. 3 (2009), no. 3, 329–335. https://doi.org/10.1007/s11590-008-0112-7
- M. A. Noor, T. M. Rassias, and Z. Huang, Three-step iterations for nonlinear accretiveoperator equations, J. Math. Anal. Appl. 274 (2002), no. 1, 59–68. https://doi.org/10.1016/S0022-247X(02)00224-X
- X. Qin, Y. Su, and M. Shang, Approximating common fixed points of asymptoticallynonexpansive mappings by composite algorithm in Banach spaces, Cent. Eur. J. Math.5 (2007), no. 2, 345–357. https://doi.org/10.2478/s11533-007-0010-8
- S. Reich, Constructive Techniques for Accretive and Monotone Operators, Applied nonlinear analysis (Proc. Third Internat. Conf., Univ. Texas, Arlington, Tex., 1978), pp. 335–345, Academic Press, New York-London, 1979.
- M. Shang, Y. Su, and X. Qin, Three-step iterations for nonexpansive mappings andinverse-strongly monotone mappings, J. Syst. Sci. Complex. 22 (2009), no. 2, 333–344. https://doi.org/10.1007/s11424-009-9168-4
- B. Xu and M. A. Noor, Fixed-point iterations for asymptotically nonexpansive mappingsin Banach spaces, J. Math. Anal. Appl. 267 (2002), no. 2, 444–453. https://doi.org/10.1006/jmaa.2001.7649
- Y. Yao and M. A. Noor, On viscosity iterative methods for variational inequalities, J.Math. Anal. Appl. 325 (2007), no. 2, 776–787. https://doi.org/10.1016/j.jmaa.2006.01.091