References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge UniversityPress, Cambridge, 1989.
- D. Amir, Characterizations of Inner Product Spaces, Birkhauser, Basel, 1986.
- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064
- T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. FuzzyMath. 11 (2003), no. 3, 687–705.
- T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3,513–547. https://doi.org/10.1016/j.fss.2004.05.004
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), no. 1-2, 76–86. https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math.Sem. Univ. Hamburg 62 (1992), 59–64. https://doi.org/10.1007/BF02941618
- S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additivemappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436. https://doi.org/10.1006/jmaa.1994.1211
- A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations,Publ. Math. Debrecen 48 (1996), no. 3-4, 217–235.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in SeveralVariables, Birkhauser, Basel, 1998.
- P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. ofMath. (2) 36 (1935), no. 3, 719–723. https://doi.org/10.2307/1968653
- K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadraticinequality, Math. Inequal. Appl. 4 (2001), no. 1, 93–118.
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in MathematicalAnalysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
- Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math.27 (1995), no. 3-4, 368–372. https://doi.org/10.1007/BF03322841
- D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation inrandom normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100
- A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensenfunctional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730–738. https://doi.org/10.1016/j.fss.2007.07.011
- A. K. Mirmostafee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem,Fuzzy Sets and Systems 159 (2008), no. 6, 720–729. https://doi.org/10.1016/j.fss.2007.09.016
- A. K. Mirmostafee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008), no. 19, 3791–3798. https://doi.org/10.1016/j.ins.2008.05.032
- A. Najati and C. Park, Fixed points and stability of a generalized quadratic functionalequation, J. Inequal. Appl. 2009 (2009), Article ID 193035, 19 pages.
- C. Park, Fuzzy stability of a functional equation associated with inner product spaces,Fuzzy Sets and Systems 160 (2009), no. 11, 1632–1642. https://doi.org/10.1016/j.fss.2008.11.027
- C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl.275 (2002), no. 2, 711–720. https://doi.org/10.1016/S0022-247X(02)00386-4
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72 (1978), no. 2, 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
- F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano53 (1983), 113–129. https://doi.org/10.1007/BF02924890
- S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York,1960.
Cited by
- Local stability of the Pexiderized Cauchy and Jensen's equations in fuzzy spaces vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-78
- Stability of functional equations of n-Apollonius type in fuzzy ternary Banach algebras vol.18, pp.4, 2016, https://doi.org/10.1007/s11784-016-0292-1
- A functional equation related to inner product spaces in non-Archimedean L-random normed spaces vol.2012, pp.1, 2012, https://doi.org/10.1186/1029-242X-2012-168
- Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation vol.2011, 2011, https://doi.org/10.1155/2011/671514
- Lattictic non-archimedean random stability of ACQ functional equation vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1847-2011-31