DOI QR코드

DOI QR Code

FUZZY STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION

  • Najati, Abbas (DEPARTMENT OF MATHEMATICS UNIVERSITY OF MOHAGHEGH ARDABILI)
  • Received : 2009.07.21
  • Published : 2010.07.31

Abstract

We prove the generalized Hyers-Ulam stability of the generalized quadratic functional equation $$f(rx\;+\;sy)\;=\;r^2f(x)\;+\;s^2f(y)\;+\;\frac{rs}{2}[f(x\;+\;y)\;-\;f(x\;-\;y)]$$ in fuzzy Banach spaces, where r, s are non-zero rational numbers with $r^2\;+\;s^2\;{\neq}\;1$.

Keywords

References

  1. J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge UniversityPress, Cambridge, 1989.
  2. D. Amir, Characterizations of Inner Product Spaces, Birkhauser, Basel, 1986.
  3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc.Japan 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064
  4. T. Bag and S. K. Samanta, Finite dimensional fuzzy normed linear spaces, J. FuzzyMath. 11 (2003), no. 3, 687–705.
  5. T. Bag and S. K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005), no. 3,513–547. https://doi.org/10.1016/j.fss.2004.05.004
  6. P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27(1984), no. 1-2, 76–86. https://doi.org/10.1007/BF02192660
  7. S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math.Sem. Univ. Hamburg 62 (1992), 59–64. https://doi.org/10.1007/BF02941618
  8. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore and London, 2002.
  9. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additivemappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436. https://doi.org/10.1006/jmaa.1994.1211
  10. A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations,Publ. Math. Debrecen 48 (1996), no. 3-4, 217–235.
  11. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci.U.S.A. 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222
  12. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in SeveralVariables, Birkhauser, Basel, 1998.
  13. P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. ofMath. (2) 36 (1935), no. 3, 719–723. https://doi.org/10.2307/1968653
  14. K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadraticinequality, Math. Inequal. Appl. 4 (2001), no. 1, 93–118.
  15. S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in MathematicalAnalysis, Hadronic Press, Inc., Palm Harbor, FL, 2001.
  16. Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math.27 (1995), no. 3-4, 368–372. https://doi.org/10.1007/BF03322841
  17. D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation inrandom normed spaces, J. Math. Anal. Appl. 343 (2008), no. 1, 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100
  18. A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensenfunctional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730–738. https://doi.org/10.1016/j.fss.2007.07.011
  19. A. K. Mirmostafee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem,Fuzzy Sets and Systems 159 (2008), no. 6, 720–729. https://doi.org/10.1016/j.fss.2007.09.016
  20. A. K. Mirmostafee and M. S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008), no. 19, 3791–3798. https://doi.org/10.1016/j.ins.2008.05.032
  21. A. Najati and C. Park, Fixed points and stability of a generalized quadratic functionalequation, J. Inequal. Appl. 2009 (2009), Article ID 193035, 19 pages.
  22. C. Park, Fuzzy stability of a functional equation associated with inner product spaces,Fuzzy Sets and Systems 160 (2009), no. 11, 1632–1642. https://doi.org/10.1016/j.fss.2008.11.027
  23. C. Park, On the stability of the linear mapping in Banach modules, J. Math. Anal. Appl.275 (2002), no. 2, 711–720. https://doi.org/10.1016/S0022-247X(02)00386-4
  24. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72 (1978), no. 2, 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
  25. Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers Co., Dordrecht, Boston, London, 2003.
  26. F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano53 (1983), 113–129. https://doi.org/10.1007/BF02924890
  27. S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York,1960.

Cited by

  1. Local stability of the Pexiderized Cauchy and Jensen's equations in fuzzy spaces vol.2011, pp.1, 2011, https://doi.org/10.1186/1029-242X-2011-78
  2. Stability of functional equations of n-Apollonius type in fuzzy ternary Banach algebras vol.18, pp.4, 2016, https://doi.org/10.1007/s11784-016-0292-1
  3. A functional equation related to inner product spaces in non-Archimedean L-random normed spaces vol.2012, pp.1, 2012, https://doi.org/10.1186/1029-242X-2012-168
  4. Fixed Points and Random Stability of a Generalized Apollonius Type Quadratic Functional Equation vol.2011, 2011, https://doi.org/10.1155/2011/671514
  5. Lattictic non-archimedean random stability of ACQ functional equation vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1847-2011-31