DOI QR코드

DOI QR Code

Kinetics and Mechanism of Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Carbonates

  • Kim, Song-I (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Hwang, So-Jeong (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Jung, Eun-Mi (Department of Chemistry, Sangmyung University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2010.05.20
  • Accepted : 2010.05.27
  • Published : 2010.07.20

Abstract

Second-order rate constants $(k_{OH^-})$ have been measured spectrophotometrically for alkaline hydrolysis of Y-substituted phenyl phenyl carbonates (2a-j) and compared with the $k_{OH^-}$ values reported previously for the corresponding reactions of Y-substituted phenyl benzoates (1a-j). Carbonates 2a-j are 8~16 times more reactive than benzoates 1a-j. The Hammett plots correlated with $\sigma^-$ and $\sigma^o$ constants exhibit many scattered points, while the Yukawa-Tsuno plot results in excellent linear correlation with $\rho$ = 1.21 and $\gamma$ = 0.33. Thus, the reaction has been concluded to proceed through a concerted mechanism in which expulsion of the leaving group is advanced only a little. However, one cannot exclude a possibility that the current reaction proceeds through a forced concerted mechanism with a highly unstable intermediate.

Keywords

References

  1. Jones, R. A. Y. Physical and Mechanistic Organic Chemistry; Cambridge: Norwich, 1984; pp 265-287.
  2. Samuel, D.; Silver,B. L. Adv. Phys. Org. Chem. 1965, 87, 123-186.
  3. Johnson, S. L.Adv. Phys. Org. Chem. 1967, 5, 237-330. https://doi.org/10.1016/S0065-3160(08)60312-3
  4. McClelland, R. A.; Santry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  5. Kirsch, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33,127-132. https://doi.org/10.1021/jo01265a023
  6. Caplow, M.; Jencks, W. P. Biochem. 1962, 1, 883-893. https://doi.org/10.1021/bi00911a022
  7. Herbst, R. L.; Jacox, M. E. J. Am. Chem. Soc. 1952, 74, 3004-3006. https://doi.org/10.1021/ja01132a015
  8. Bunton, C. A.; Schachter D. M. J. Chem. Soc. 1956, 1079-1080.
  9. Bender, M. L. J. Am. Chem. Soc. 1951, 73, 1626-1629. https://doi.org/10.1021/ja01148a063
  10. Marlier,J. F. J. Am. Chem. Soc. 1993, 115, 5953-5956. https://doi.org/10.1021/ja00067a008
  11. Hori, K.; Hashitani, Y.; Kaku, Y.; Ohkubo, K. Theochem 1999,461-462, 589-596.
  12. Zhan, C. G.; Landry, D. W.; Ornstein, R. L.J. Am. Chem. Soc. 2000, 122, 1522-1530. https://doi.org/10.1021/ja993311m
  13. Um, I. K.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006,4, 2979-2985. https://doi.org/10.1039/b607194e
  14. Carrol, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, 1998; pp 371-386.
  15. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd ed.; Harper Collins Publishers: New York, 1987; pp 143-151.
  16. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J.2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  17. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438- 1444. https://doi.org/10.1021/jo048227q
  18. Um, I. H.; Chun, S. M.; Chae, O.M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  19. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  20. Sarel, S.; Katzhendler, J.; Poles, L. A. J. Chem. Soc. B. Phys. Org. 1971, 1847-1854. https://doi.org/10.1039/j29710001847
  21. Tillett, J. G.; Wiggins, D. E. J. Chem. Soc. B. Phys. Org. 1970, 1359-1361. https://doi.org/10.1039/j29700001359
  22. Pohoryles, L. A.; Levin, I.;Sarel, S. J. Chem. Soc. 1960, 3082-3086. https://doi.org/10.1039/jr9600003082
  23. Isaacs, N. S. Physical Organic Chemistry; Longman: England,1995; p 153.
  24. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry; Harper Collins: New York, 1987; p 153.
  25. Um, I. K.; Son, M. J.; Kim, S. I.; Akhtar, K. Bull. Korean Chem. Soc. 2010, in press.
  26. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637. https://doi.org/10.1021/ja01012a030
  27. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  28. Um, I. H.; Han, J. Y.; Hwang, S. J. Chem. Eur. J. 2008,14, 7324-7330. https://doi.org/10.1002/chem.200800553
  29. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543. https://doi.org/10.1039/b712427a
  30. Um, I. H.; Seo, J. A.; Lee, H. M. Bull. Korean Chem. Soc.2008, 29, 1915-1919. https://doi.org/10.5012/bkcs.2008.29.10.1915
  31. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bea, S.K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  32. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  33. Um, I. H.; Hwang, S. J.; Yoon, S.; Jeon, S. E.; Bae, S.K. J. Org. Chem. 2008, 73, 7671-7677. https://doi.org/10.1021/jo801539w
  34. Um, I. H.; Lee, S. E.;Kwon, H. J. J. Org. Chem. 2002, 67, 8999-9005. https://doi.org/10.1021/jo0259360
  35. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70,1438-1444. https://doi.org/10.1021/jo048227q
  36. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.;Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  37. Um, I. H.; Hong,J. Y.; Kim, J. J.; Chae, O. M.; Bea, S. K. J. Org. Chem. 2003, 68,5180-5185. https://doi.org/10.1021/jo034190i
  38. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970. https://doi.org/10.1246/bcsj.32.965
  39. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139. https://doi.org/10.1039/cs9962500129
  40. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385. https://doi.org/10.1016/S0065-3160(08)60009-X
  41. Than, S.; Fujio, M.; Kikukawa, K.; Mishima, M. Int. J. Mass Spec. 2007, 263, 205-214.
  42. Maeda, H.; Irie, M.; Than, S.; Kikukawa,K.; Mishima, M. Bull. Chem. Soc. Jpn. 2007, 80, 195-203. https://doi.org/10.1246/bcsj.80.195
  43. Fujio, M.; Umezaki, Y.; Alam, M. A.; Kikukawa, K.; Fujiyama,R.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2006, 79, 1091-1099. https://doi.org/10.1246/bcsj.79.1091
  44. Fujio,M.; Uchida, M.; Okada, A.; Alam, M. A.; Fujiyama, R.; Siehl, H.U.; Tsuno, Y. Bull. Chem. Soc. Jpn. 2005, 78, 1834-1842. https://doi.org/10.1246/bcsj.78.1834
  45. Banait, N. S.; Jencks, W. P. J. Am. Chem. Soc. 1991, 113, 7951-7958. https://doi.org/10.1021/ja00021a021
  46. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem.2001, 66, 6571-6575. https://doi.org/10.1021/jo0101252

Cited by

  1. -catalyzed methanolysis of carbonates: possible application for the recycling of bisphenol A polycarbonates vol.91, pp.11, 2013, https://doi.org/10.1139/cjc-2013-0270
  2. Alkaline Hydrolysis of 4-Nitrophenyl X-Substituted-Benzoates Revisited: New Insights from Yukawa-Tsuno Equation vol.37, pp.12, 2016, https://doi.org/10.1002/bkcs.11000
  3. -Y-substituted-Phenyl Thionocarbonates with 1,8-Diazabicyclo[5.4.0]undec-7-ene in Acetonitrile vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11242
  4. mPEG-NHS carbonates: Effect of alkyl spacers on the reactivity: Kinetic and mechanistic insights pp.00218995, 2018, https://doi.org/10.1002/app.47028
  5. Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism vol.32, pp.1, 2010, https://doi.org/10.5012/bkcs.2011.32.1.179
  6. Nucleophilic Substitution Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Butane-2,3-dione Monoximate and 4-Chlorophenoxide: Origin of the α-Effect vol.34, pp.1, 2010, https://doi.org/10.5012/bkcs.2013.34.1.49