DOI QR코드

DOI QR Code

Selective Monitoring of Rutin and Quercetin based on a Novel Multi-wall Carbon Nanotube-coated Glassy Carbon Electrode Modified with Microbial Carbohydrates α-Cyclosophorohexadecaose and Succinoglycan Monomer M3

  • Jin, Joon-Hyung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Cho, Eun-Ae (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kwon, Chan-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Jung, Seun-Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2010.03.23
  • Accepted : 2010.05.04
  • Published : 2010.07.20

Abstract

Multi-wall carbon nanotube (MWNT)-modified glassy carbon electrodes (GCE) were prepared for simultaneous determination of rutin and quercetin. Microbial carbohydrates, $\alpha$-cyclosophorohexadecaose ($\alpha$-C16) and succinoglycan monomer M3 (M3) were doped into MWNTs to prepare a $\alpha$-C16-doped MWNT-modified GCE (($\alpha$-C16 + MWNTs)/GCE) and a M3-doped MWNT-modified GCE ((M3 + MWNTs)/GCE), respectively. The sensitivities of the ($\alpha$-C16 + MWNTs)/GCE to rutin and quercetin were 34.7 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ and 18.3 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$, respectively, in a linear range of $2\sim8{\mu}M$ at pH 7.2. The sensitivities of the (M3 + MWNTs)/GCE was 2.44 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ for rutin and 7.19 ${\mu}A\cdot{\mu}M^{-1}{\cdot}cm^{-2}$ for quercetin without interference.

Keywords

References

  1. Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. M.J. CRC Crit. Rev. Food Sci. Nutz. 2005, 45, 287. https://doi.org/10.1080/1040869059096
  2. Verma, A. K.; Johnson, J. A.; Gould, M. N.; Tanner, M. A. Cancer Res. 1988, 48, 5754.
  3. Bao, X.; Zhu, Z.; Li, N.-Q.; Chen, J. Talanta 2001, 54, 591. https://doi.org/10.1016/S0039-9140(00)00667-6
  4. Kim, H.; Jeong, K.; Jung, S. Bull. Korean Chem. Soc. 2006, 27, 325. https://doi.org/10.5012/bkcs.2006.27.2.325
  5. Xu, G.-R.; In, M. Y.; Yuan, Y.; Lee, J.-J.; Kim, S. Bull. Korean Chem. Soc. 2007, 28, 889. https://doi.org/10.5012/bkcs.2007.28.5.889
  6. Vestergaard, M.; Kerman, K.; Tamiya, E. Anal. Chim. Acta 2005,538, 273. https://doi.org/10.1016/j.aca.2005.01.067
  7. He, J.-B.; Lin, X.-Q.; Pan, J. Electroanalysis 2005, 17, 1681. https://doi.org/10.1002/elan.200503274
  8. Zhou, A.; Kikandi, S.; Sadik, O. A. Electrochem. Comm. 2007, 9,2246. https://doi.org/10.1016/j.elecom.2007.06.026
  9. Lin, X.-Q.; He, J.-B.; Zha, Z.-G. Sens. Actuator. B 2006, 119, 608. https://doi.org/10.1016/j.snb.2006.01.016
  10. Miller, K. J.; Kennedy, E. P.; Reinhold, V. N. Science 1986, 231, 48. https://doi.org/10.1126/science.3941890
  11. Vonjnov, A. A.; Slater, H.; Newman, M.; Daniels, M. J.; Dow, J. M. Arch. Microbiol. 2001, 176, 415. https://doi.org/10.1007/s002030100341
  12. Wang, L. X.; Wang, Y.; Pellock, B.; Walker, G. C. J. Bacteriol.1999, 181, 6788.
  13. Lee, S.; Cho, E.; Kwon, C.; Jung, S. Carbohyd. Res. 2007, 342,2682. https://doi.org/10.1016/j.carres.2007.07.006
  14. Ghica, M.-E.; Oliveira-Brett, A. M. Electroanalysis 2005, 17, 313. https://doi.org/10.1002/elan.200403100
  15. He, J.-B.; Wang, Y.; Deng, N.; Lin, X.-Q. Bioelectrochem. 2007,71, 157. https://doi.org/10.1016/j.bioelechem.2007.03.003
  16. Namazian, M.; Zare, H. R.; Coote, M. L. Biophys. Chem. 2008,132, 64. https://doi.org/10.1016/j.bpc.2007.10.010

Cited by

  1. Covalent grafting of three flavonoids onto the glassy carbon electrode surface by cyclic voltammetry vol.30, pp.3-4, 2011, https://doi.org/10.1515/REVAC.2011.105
  2. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009-2010 vol.34, pp.3, 2015, https://doi.org/10.1002/mas.21411