DOI QR코드

DOI QR Code

금 나노입자/폴리(maleic anhydride) 그래프트 탄소나노튜브에 글루코스 옥시다아제 담지를 기반으로 한 글루코스 바이오센서

A glucose biosensor based on deposition of glucose oxidase onto Au nanoparticles poly(maleic anhydride)-grafted multiwalled carbon nanotube electrode

  • 투고 : 2010.01.25
  • 심사 : 2010.02.11
  • 발행 : 2010.04.25

초록

글루코스 옥시다아(GOx)제 고정화 바이오센서를 두 가지 방법으로 제조 하였다. 첫 번째 방법은 폴리(maleic anhydride) 그래프트 탄소나노튜브(PMAn-g-MWCNT) 전극에 감마선 조사법으로 제조 된 Au 나노입자를 물리적으로 흡착시킨 후, GOx을 고정화 시켜 바이오센서를 제조한 경우이고, 다른 하나는 PMAn-g-MWCNT 전극에서 Au 이온을 전기화학적으로 환원시켜 Au 나노입자를 코팅 시키고, 그 위에 GOx을 고정화 시켜 바이오센서를 제조 한 경우이두. 제조된 바이오센서에 대해 효율 평가를 수행 하였는데, 물리적 흡착법으로 제조된 전극의 경우 검출 범위는 $30\;{\mu}M\sim100\;{\mu}M$이었으며, 검출한계는 $15\;{\mu}M$이었다. 또한 ascorbic acid와 uric acid에 대한 검출한계는 7.6%이었다. 물리적으로 Au 나노입자가 흡착된 전극의 경우가 글루코스 측정에 매우 우수한 전극임을 확인 하였다.

Glucose oxidase ($GOD_{ox}$) immobilized biosensor was fabricated by two methods. In one of the methods, gold nanoparticles (Au-NPs) prepared by ${\gamma}$-irradiation were loaded into the poly(maleic anhydride)-grafted multi-walled carbon nanotube, PMAn-g-MWCNT electrode via physical entrapment. In the other method, the Au-NPs were prepared by electrochemical reduction of Au ions on the surface of PMAn-g-MWCNT electrode and then GODox was immobilized into the Au-NPs. The $GOD_{ox}$ immobilized biosensors were tested for electrocatalytic activities to sense glucose. The sensing range of the biosensor based on the Au-NPs physically modified PMAn-g-MWCNT electrode was from $30\;{\mu}M$ to $100\;{\mu}M$ for the glucose concentration, and the detection limit was $15\;{\mu}M$. Interferences of ascorbic acid and uric acid were below 7.6%. The physically Au deposited PMAn-g-MWCNT paste electrodes appear to be good sensor in detecting glucose.

키워드

참고문헌

  1. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M.F. Choi, Analyst, 133, 126-132(2008). https://doi.org/10.1039/b712970j
  2. F. Kurniawan, V. Tsakova, and V.M. Mirsky, Electroanalysis, 18, 1937-1942(2006). https://doi.org/10.1002/elan.200603607
  3. L. Q. Rong, C. Yang, Q. Y. Qian, and X. H. Xia, Talanta, 72, 819-824(2007). https://doi.org/10.1016/j.talanta.2006.12.037
  4. J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, and F. S. Sheu, Electrochem. Comm., 6, 66-70(2004). https://doi.org/10.1016/j.elecom.2003.10.013
  5. C. K. Tan, K. P. Loh, and T. T. L. John, Analyst, 133, 448-451(2008). https://doi.org/10.1039/b719914g
  6. S. Chakraborty and C. R. Raj, J. Electroanal. Chem., 609, 155-162(2007). https://doi.org/10.1016/j.jelechem.2007.06.024
  7. K. B. Male, S. Hrapovic, and J. H. T. Luong, Analyst, 132, 1254-1261(2007). https://doi.org/10.1039/b712478c
  8. A. Arvinte, A. M. Sesay, V. Virtanen, and C. Bala, Electroanalysis, 20, 2355-2362(2008). https://doi.org/10.1002/elan.200804332
  9. Y. Liu, M. K. Wang, F. Zhao, Z. A. Xu, and S. J. Dong, S. J. Biosens. Bioelectron. 21, 984-988(2005). https://doi.org/10.1016/j.bios.2005.03.003
  10. K. Yamamoto, G. Y. Shi, T. S. Zhou, F. Xu, J. M. Xu, T. Kato, J. Y. Jin, and L.T. Jin, Analyst, 128, 249-254(2003). https://doi.org/10.1039/b209698f
  11. W. J. Guan, Y. Li, Y. Q. Chen, X. B. Zhang, and G. Q. Hu, Biosens. Bioelectron. 21, 508-512(2005). https://doi.org/10.1016/j.bios.2004.10.030
  12. F. Patolsky, Y. Weizmann, and I Willner, Angew. Chem. Int. Ed. 43, 2113-2117(2004). https://doi.org/10.1002/anie.200353275
  13. Y. J. Zhang, Y. F. Shen, J. H. Li, L. Niu, S. J. Dong, and A. Ivaska, Langmuir, 21, 4797-4800(2005). https://doi.org/10.1021/la050026+
  14. M. Malmsten and A. Larsson, Colloid. Surf. B. Biointer. 18, 277-284(2000). https://doi.org/10.1016/S0927-7765(99)00153-8
  15. S. H. Choi and Y. C. Nho, Radiat. Phys. Chem., 58, 157-168(2000). https://doi.org/10.1016/S0969-806X(99)00367-9
  16. S. H. Choi, K. P. Lee and H. D. Kang, J. Appl. Polym. Sci., 88, 1153-1161(2003). https://doi.org/10.1002/app.11737
  17. C. Gouveria-Caridade, R. Pauliukaite, and C. M. A. Brett, Electrochim. Acta, 53, 6732-6739(2008). https://doi.org/10.1016/j.electacta.2008.01.040
  18. J. Wang, M. Musameh and Y. H. Lin, J. Am. Chem. Soc., 125, 2408-2409(2003). https://doi.org/10.1021/ja028951v
  19. H. Y. Gu, A.M. Yu, and H. Y. Chen, J. Electroanal. Chem., 516, 119-126(2001). https://doi.org/10.1016/S0022-0728(01)00669-6
  20. H. Feng, H. Wang, Y. Zhang, B. N. Yan, G. L. Shen, and R.Q. Yu, Anal. Sci., 23, 235-239(2007). https://doi.org/10.2116/analsci.23.235
  21. K. P. Lee, A. Gopalan, A. P. Santhosh, K. M Manesh, J. H. Kim, and K. S. Kim, J. Nanosci. Nanotechnol., 6, 1575-1583(2006). https://doi.org/10.1166/jnn.2006.212
  22. Z. J. Wang, M. Li, P. P. Su, Y. Zhang, Y. F. Shen, D. X. Han, A. Ivaska, and L. Niu, Electrochem. Commun., 10, 306-310(2008). https://doi.org/10.1016/j.elecom.2007.12.011
  23. L. T. Qu, L. Dai, and F. Osawa, J. Am. Chem. Soc., 128, 5523-5532(2006). https://doi.org/10.1021/ja060296u
  24. J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li and S. J. Dong, Anal. Chem., 74, 2217-2223(2002). https://doi.org/10.1021/ac011116w
  25. T. H. Li, H. G. Park and S. H. Choi, Mater. Chem. Phys., 105, 325-330(2007). https://doi.org/10.1016/j.matchemphys.2007.04.069
  26. B. V. Enustun and J. Turkevich, J. Am. Chem. Soc., 85, 3317-3328(1963). https://doi.org/10.1021/ja00904a001
  27. N. Li, R.Yuan, Y. Q. Chai, S. H. Chen, H. Z. An, and W. J. Li, J. Phys. Chem. C, 111, 8443-8450(2007). https://doi.org/10.1021/jp068610u
  28. M. H. Piao, D. S. Yang, K. R. Yoon, S. H. Lee and S. H. Choi, Sensors, 9, 1662-1667(2009). https://doi.org/10.3390/s90301662
  29. H. J. Kim, S. H. Choi, S. H. Oh, J. C. Woo, and I. K. Kim, J. Nanosci. Nanotechnol., 8, 1-6(2008). https://doi.org/10.1166/jnn.2008.N03

피인용 문헌

  1. Polymer-copper-modified MWNTs by radiation-induced graft polymerization and their efficient adsorption of odorous gases vol.126, pp.S2, 2012, https://doi.org/10.1002/app.35453
  2. Immobilization of Enzymes via Microcontact Printing and Thiol–Ene Click Chemistry vol.26, pp.6, 2015, https://doi.org/10.1021/acs.bioconjchem.5b00282