Gene Expression and Response of Arabidopsis AtSIZ3 Mutants to Temperature and Drought Stress

애기장대 AtSIZ3 변이형의 온도 및 건조 스트레스에 대한 반응과 유전자 발현

  • 권순태 (안동대학교 생명자원과학부) ;
  • 정형진 (안동대학교 생명자원과학부) ;
  • Received : 2009.09.01
  • Accepted : 2009.12.28
  • Published : 2010.02.28

Abstract

This study was carried out to understand the effect of low temperature($4^{\circ}C$), heat shock($37^{\circ}C$) and drought stresses on the growth and gene expression of Arabidopsis ATSIZ3(at1g08910) mutants. The seedling growth of SIZ3-mutants were markedly inhibited by the treatment of heat shock or chilling stresses. However, there was no significant differences between wild type and SIZ3-mutants in seeding fresh weight. As compared to wild type plants, SIZ3-mutants showed 63.9% inhibition of seedling fresh weight by the treatment of 10 days drought stress, suggesting that SIZ3 is involved in the resistance of Arabidopsis to drought stress. Base on RT-PCR analysis, expression of SIZ3 mRNA in the wild type showed 20% inhibition by chilling stress, 3.7 and 4.5 fold increase by the treatment of heat shock or drought stresses, respectively.

애기장대의 AtSIZ3(At1g08910) 유전자에 T-DNA를 삽입한 세 종류의 변이형에 저온($4^{\circ}C$), 고온($37^{\circ}C$) 및 건조스트레스를 처리하여 유묘의 생장반응과 유전자 발현을 조사하였다. 저온과 고온처리에 의해서는 야생형과 변이형간에 유묘생장에 유의한 차이를 보이지 않았다. 야생형과 변이형 식물체에 10일간의 건조스트레스를 처리하면 야생형은 재 관수에 의해 모든 식물체가 재생하였으나 변이형은 모두 고사하였고, 10일간의 건조처리로 변이형은 야생형에 비해 유묘생장이 평균 62.9%가 억제되는 것으로 나타났다. 야생형에서 AtSIZ3 유전자는 $4^{\circ}C$의 저온처리에서 무처리를 보다 20%정도 발현이 감소하는 반면, $37^{\circ}C$ 고온처리에서는 3.7배, 건조처리에서는 4.5배가 증가하였다. 이 결과로 보아 AtSIZ3 유전자는 식물의 건조내성과 밀접한 연관이 있을 것으로 판단된다.

Keywords

References

  1. Abe, H., KY. Shinozaki, T. Urano, T. Iwasaki, D. Hosokawa, and K. Shinozaki. 1997. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859-58.
  2. Bohnert, H.J. and R.G. Jensen. 1996. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 14: 89-97. https://doi.org/10.1016/0167-7799(96)80929-2
  3. Freiman, K.A. and R. Tijan. 2003. Regulating the regulators: Lysine modification make their mark. Cell 112:11-17. https://doi.org/10.1016/S0092-8674(02)01278-3
  4. Hasegawa, P.M., R.A. Bressan, J.K. Zhu, and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol, Plant Mol. Biol. 51: 463-499. https://doi.org/10.1146/annurev.arplant.51.1.463
  5. Jin, J.B., H. Bae, S.J. Kim, Y.H. Jin, C.H. Goh, D.H. Kim, Y.J. Lee, Y.C. Tse, L. Jiang, and I. Hwang. 2003. The Arabidopsis dynamic-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15:2357-2569. https://doi.org/10.1105/tpc.015222
  6. Kurepa, J., J.M. Walker, J. Smalle, M.M. Gosinl, S.J. Davis, T.L. Durham, D.Y. Sung, and R.D. Vierstra. 2003. The small ubiquitin-like modifer (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress. J. Biol. Chem. 278:6862-6872. https://doi.org/10.1074/jbc.M209694200
  7. Mahajan, R., C. Delphin, T. Guan, L. Gerace, and F. Melchior. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanGP2. Cell 88:97-107. https://doi.org/10.1016/S0092-8674(00)81862-0
  8. Miura, K., A. Rus, A. Sharkhuu, S. Yokoi, A.S. Karthikeyan, K.G. Raghothama, D. Baek, Y.D. Koo, J.B. Jin, R.A. Bressan, D.J. Yoon, and P.M. Hasegawa. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency response. Proc. Natl. Acad. Sci. 102:7760-7765. https://doi.org/10.1073/pnas.0500778102
  9. Murashige, T. and F. Skoog. 1962. Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 15, 473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x