DOI QR코드

DOI QR Code

Bioavailability and Digestibility of Organic Calcium Sources by Bone Health Index

뼈건강 지표를 이용한 유기태 칼슘 급원의 생체이용성 및 소화율

  • Received : 2009.12.16
  • Accepted : 2010.01.12
  • Published : 2010.02.28

Abstract

This study was carried out to evaluate the bioavailabilities and the digestibilities of oligopeptide chelated (peptide-Ca), anchovy bone (anchovy-Ca) and methionine hydroxyl analogue (MHA-Ca) calcium compared to those of calcium carbonate in rats. In exp1, $CaCO_3$, were added to the basal diet at level of 0, 30 and 60% calcium of the AIN-93G diet. In test groups, peptide-Ca, anchovy-Ca and MHA-Ca, were added to the basal diet to provide calcium at the level of 40% of AIN-93G. In exp1, the bioavailabilities were evaluated from the regression equation of the ratios of theological/ actual calcium intakes of each dietary treatment. In exp2, urine and feces was to evaluate the true- and apparent digestibility and apparent retention. In exp1, Ca-60% group had higher bone mineral density (BMD), bone mineral content (BMC) and bone breaking strength (BBS) than those of the other standard groups. The bone weight and ash content of the peptide-Ca and anchovy-Ca groups were significantly higher than those of the MHA-Ca. Bone calcium content were not significantly different from the test group. The bioavailability of the MHA-Ca group was shown higher BMD (71%), BS (38%) and BBS (27%) compared to another control group. But the regression coefficient for BMD, BS and BBS were lower compare with that of bone ash and BMC. In exp2, the true- and apparent digestibility of test groups were shown to over 90%. Peptide-Ca was not significantly different from other test group, but digestibility and retention were higher compare to other test groups. In conclusion, peptide-Ca, anchovy-Ca and MHA-Ca improved Ca bioavailability in the rats. The compounds were higher Ca digestibility compared with those of $CaCO_3$. It is assumed that difference of digestibility for test groups may be correlated to the bioavailability of test groups in BMD, BMC, BS, BBS and bone ash respectively.

본 연구는 $CaCO_3$를 표준으로 장내 칼슘 흡수를 촉진하는 peptide-Ca, anchovy-Ca, methionine hydroxyl analogue calcium의 생체이용성과 소화율을 평가하였다. 표 준군은 $CaCO_3$를 AIN-93G (1993)를 기준으로 칼슘 요구량의 0%, 30%, 60%로 첨가하여 모든 분석 항목에 대한 비교기준으로 삼았다. 실험군은 요구량의 40% 수준으로 각기 다른 칼슘 공급원으로 실험하였다. 실험결과는 대부분 칼슘 함량이 높은 Ca-60%군이 가장 높은 수치를 보여 주어 칼슘의 섭취량과 비례하여 양의 상관 관계를 보여 주었다. 생체이용성 평가에서는 MHA-Ca 군이 체중 증가량, BMD, BS, BBS 항목에서 높은 이용성을 보여 주었다. peptide-Ca은 회귀계수가 높은 회분함량 ($R^2\;=\;0.98$)과 BMC ($R^2\;=\;0.935$)를 이용한 평가 에서 표준군에 비해 11%, 7% 높은 이용성을 보여주었다. Anchovy-Ca군 역시 여러 생체이용성 평가항목에서 높은 이용성을 나타냈다. 이는 동일한 양의 칼슘을 섭취했을 때 실험군이 표준으로 사용된 $CaCO_3$ 보다 높은 칼슘 이용성을 가지고 있음을 의미한다. 하지만 본 연구로는 유기태 칼슘이 어떤생리 활성 작용을 통해 이러한 결과를 나타냈는지는 알 수 없었으며, 이 부분을 분명하게 규명하는 추가적인 연구가 필요한 것으로 판단된다. 소화율 측정항목에서는 Ca-0%군을 제외하고는 90% 이상 높은 칼슘 소화율을 나타냈다. 소화율과 보유율에서 peptide-Ca군이 유의한 차이는 없었지만 다른 실험군에 비해 미세하게 높았다. 이러한 차이의 축적으로 인해 생체이용성 평가시 실험군간 차이를 보여 주었다. 결국 공급한 칼슘에 대한 소화 및 흡수의 차이에 의해 뼈 건강관련 지표가 좋아지고 이로 인해 실험군의 생체 이용성이 높게 평가 되었다. Peptide-Ca와 순수한 식품 칼슘 급원인 멸치 뼈는 높은 칼슘 이용성을 나타내어, 체내칼슘 영양개선에 상당한 효과가 있슴이 증명되었다.

Keywords

References

  1. The Korean Nutrition Society, Dietary Reference Intakes for Koreans, Seoul; 2005
  2. Korea Centers for Disease Control and Prevention, The third Korea National Health and Nutrition Examination Survey (KNHANES III); 2005
  3. Allen LH, Wood RJ. Calcium and phosphorus. In: Shils ME, Olson. JA M. eds.: Modern Nutrition in Health and Disease, 8th Ed; 1994. p.144-163
  4. Allen LH. Calcium bioavailability and absorption: a review. Am J Clin Nutr 1982; 35: 783-808
  5. Linder MC. Nutrition and metabolism of major minerals. In: Linder MC, editor. Nutritional biochemistry and metabolism with clinical application. New York; Elsevier; 1991. p.191-214
  6. Levenson DI, Bockman RS. A review of calcium preparations. Nutr Rev 1994; 52: 221-232
  7. Smith EL, Gilligan C, Smith PE, Sempos CT. Calcium supplementation and bone loss in middle-aged woman. Am J Clin Nutr 1989; 50: 833-842
  8. Coe FL, Parks JH. Recurrent renal calcium. Cause and Prevention. Hosp Prac 1986; 30: 49-57
  9. Yendt ER, Cohanim M, Jarzylo S. Reduced glomerular filtration and a renal tubular Ca leak in womae with primary osteoporosis. J Bone Min Res 1989; 4(s): 253-256
  10. Sobal J, Muncie HL. Vitamin/mineral supplements use among adolescent. J Nutr Edu 1988; 20(6): 314-318
  11. Korean Pharmaceutical Association. Production sheet of medicines pharmaceutics in Korea. Seoul; 1995
  12. Heribert J, Watzke A. Impact of processing on bioavailability examples of minerals in foods. Trends in Food Sci & Technol 1998; 9: 320-327 https://doi.org/10.1016/S0924-2244(98)00060-0
  13. Susan J, Fairweather-Tait SJ. Iron and Calcium Bioavaila-bility. In: Forti editor. Foods and Dietary Supplements. New York. International Life Sciences Institute; 2002. p.360-367
  14. Fairweather-Tait SJ, Teucher B. Calcium bioavailability in relation to bone health. Int J Vitam Nutr Res 2001; 72: 13-18
  15. Gueguen L, Pointillart A. The bioavailability of dietary calcium. J Am Coll Nutr 2000; 2: 119S-136S
  16. Robert PH. Factors Influencing the Measurement of Bioavailability, Taking Calcium as a Model1. Am Society for Nutritional Sciences; 2001
  17. Sakhaee K, Bhuket T, Adams-Huet B, Rao DS. A meta-analysis of calcium bioavailability: a comparison of calcium citrate with calcium carbonate. Am J Therapeutics 1999; 6: 313-321 https://doi.org/10.1097/00045391-199911000-00005
  18. Sheikh MS, Anta ACA, Nicar MJ. Gastrointestinal absorptions of calcium from milk and calcium salt. N Engl J med 1987; 317: 532-536 https://doi.org/10.1056/NEJM198708273170903
  19. Chung HK, Chang N, Lee HS, Chang YE. The effect of various types of calcium sources on calcium and bone metabolism in rats. Korean J Nutr 1996; 29(5): 480-488
  20. Morohashi T, Sano T, Ohta A, Yamada S. True calcium absorption in intestine is enhanced by fructooligosaccharide feeding in rats. J Nutr 1998; 128: 1815-1818
  21. Harms RH, Russell GB. Adding methinionine and lysine to broiler breeder diets to lower feed costs. J A Poul Res 1998; 7(2): 202-218
  22. Lewis AJ. Bioavailability of D-amino acids and DL-Hydroxymethionine. In: Ammerman CB, Baker DH and Lewis AJ, editor. Bioavailability of Nutrients for Animals. San Diego: Academic Press; 1995. p.67-81
  23. Turner RT. Basic Biomechanical Measurements of Bone. A Tutorial Bone 1993; 14: 595-608
  24. Rath NC, Huff WE, Balog JM and Bayyari GR. Effect of gonadal steroids on bone and other physiological parameters of male broiler chickens. Poul Sci 1996; 75: 556-562
  25. Le'on Gue'guen, MsScAgr. The Bioavailability of Dietary Calcium. J Am Coll Nutr 2000; 19(2): 119S-136S
  26. Kwon OR, Kim MK. Effects of dietary Ca levels and kinds of lipid on the lipid metabolism in the rats. Korean J Nutr 1988; 21(5): 324-332
  27. Lee JH, Moon SJ, Huh KB. Influence of phytate and low dietary calcium on calcium, phosphate and zinc metabolism by growing rats. Korean J Nutr 1993; 26(2): 145-155
  28. Yacowitz H. Effects of dietary calcium upon lipid metabolism in rats fed saturated or unsaturated fat. J Nutr 1967; 92: 389-392
  29. Iacono JM. Effect of varying dietary level of calcium on plasma and tissue lipids of rabbits. J Nutr 1974; 104: 1165-1171
  30. Foley MK. Influence of dietary calcium and cholecalciferol on composition of plasma lipids in young pigs. J Nutr 1990; 120: 45-51
  31. Duan Y, Parfitt AM, Seeman E. Vertebral bone mass, size, and volumetric density in women with spinal fractures. J Bone Miner Res 1999; 14: 1796-1802 https://doi.org/10.1359/jbmr.1999.14.10.1796
  32. Cordey J, Schneider M, Belendez C, Ziegler WJ, Rahn BA, Perren SM. Effect of bone size, not density, on the stiffness of the proximal part of normal and osteoporotic human femora. J Bone Miner Res 1992; 7(Suppl2): S437-S444
  33. Vega E, Ghiringhelli G, Mautalen C, Rey VG, Scaglia H, Zylberstein C. Bone mineral density and bone size in men with primary osteoporosis and vertebral fractures. Calcif Tissue Int 1998; 62: 465-469 https://doi.org/10.1007/s002239900462
  34. Roberfroid MB, Cumps J, Devogelaer JP. Dietary chicory inulin increases whole body bone mineral density in growing male rats. J Nutr 2002; 132: 3599-3602
  35. Mehta S. Bone elasticity and ultrasound velocity are affected by subtle change in organic matrix. J Bone Miner Res 1998; 13: 114-119 https://doi.org/10.1359/jbmr.1998.13.1.114
  36. Rath NC. Factors regulating bone maturity and strength in poultry. Poultry Sci 1999; 79: 1024-1032
  37. Meulen MCH. Understanding bone strength: size isn't everything. Bone 2001; 29: 101-104 https://doi.org/10.1016/S8756-3282(01)00491-4
  38. Lee SH, Hwangbo YS, Kim JY, Lee YS. A study on the bioavailability of dietary calcium sources. Korean J Nutr 1997; 30(5): 499-505
  39. Ezawa I. Studies on calcium metabolism. Jap J Home Econo 1987; 38: 695-703
  40. Benson JD. Effect of previous calcium intake on adaptation to low and high calcium diets in rats. J Nutr 1969; 97: 53-60
  41. Sammom PE. Role of parathyroid hormone in calcium homeostasis and metabolism. Am J Physiol 1970; 218: 479-485
  42. Roland DA. Calcium metabolism in the laying hen: The calcium status of the hen at night. Poult Sci 1973; 52: 351-354
  43. Matkovic V. Factors that influence peak bone mass formation: A study of calcium balance and the inheritance of bone mass in adolescent females. Am J Clin Nutr 1990; 52: 878-888

Cited by

  1. Natural Food Additives and Preservatives for Fish-Paste Products: A Review of the Past, Present, and Future States of Research vol.2017, pp.1745-4557, 2017, https://doi.org/10.1155/2017/9675469
  2. Effect of Calcium Extracted from Salted Anchovy (Engraulis japonicus) on Calcium Metabolism of the Rat vol.42, pp.2, 2013, https://doi.org/10.3746/jkfn.2013.42.2.182
  3. Tilapia Mossambica 비늘 (어린) 유래 칼슘소재가 흰쥐의 골격대사지표와 골밀도에 미치는 영향 vol.43, pp.4, 2010, https://doi.org/10.4163/kjn.2010.43.4.351
  4. Preparation of grape seed polypeptide and its calcium chelate with determination of calcium bioaccessibility and structural characterisation vol.56, pp.1, 2010, https://doi.org/10.1111/ijfs.14616