Isolation of Phenolics, Nucleosides, Saccharides and an Alkaloid from the root of Aralia cordata

  • Hyun, Sook-Kyung (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Jung, Hyun-Ah (Division of Food Science and Biotechnology, Pukyong National University) ;
  • Min, Byung-Sun (College of Pharmacy, Catholic University of Daegu) ;
  • Jung, Jee-H. (College of Pharmacy, Pusan National University) ;
  • Choi, Jae-Sue (Division of Food Science and Biotechnology, Pukyong National University)
  • Received : 2009.09.28
  • Accepted : 2010.03.08
  • Published : 2010.03.31

Abstract

Fourteen compounds were isolated from the n-BuOH fraction of the roots of Aralia cordata (syn. = A. continentalis). Through spectroscopic method, the chemical structures were elucidated as: caffeic acid (1), protocatechuic acid (2), thymidine (3), uridine (4), methyl-$\alpha$-D-fructofuranoside (5), a mixture (3 : 1) of $\beta$-D-fructopyranoside and $\beta$-D-fructofuranoside (6), 1-methyl 1,2,3,4-tetrahydro-$\beta$-carboline-3-carboxylic acid (7), methyl-$\beta$-D-fructofuranoside (8), sucrose (9), 5-caffeoylquinic acid (chlorogenic acid) (10), 3-caffeoylquinic acid (neochlorogenic acid) (11), 4-caffeoylquinic acid (cryptochlorogenic acid) (12), 3,5-di-O-caffeoylquinic acid (13), and 1-kestose [$\beta$-D-fructofuranosyl-($2{\rightarrow}1$)-$\beta$-D-fructofuranosyl-($2{\rightarrow}1$)-$\alpha$-D-glucopyranoside] (14). Among them, compounds 5, 7, 8, and 10 - 14 were isolated from this plant for the first time.

Keywords

References

  1. Angyal, S.J. and Bethell, G.S., Conformational analysis in carbohydrate chemistry. III. Aust. J. Chem., 29, 1249-1265 (1976). https://doi.org/10.1071/CH9761249
  2. Calub, T.M. and Waterhouse, A.L., Proton and carbon chemical-shift assignments for 1-kestose, from two-dimensional n.m.r.-spectral measurements. Carbohydr. Res., 199, 11-17 (1990). https://doi.org/10.1016/0008-6215(90)84088-C
  3. Choi, J.S., Kim, J.Y.,Woo, W.W., and Young, H. S., Isolation of a $a\beta$- carboline alkaloid from the leaves of Allium tuberosum. Arch. Pharm. Res., 11, 270-272 (1988). https://doi.org/10.1007/BF02857761
  4. Duker, J.M. and Serianni, A.S., ($^{13}C$)-Substituted sucrose:$^{13}C$-$^1H$ and $^{13}C$-$^{13}C$ spin coupling constants to assess furanose ring and glycosidic bond conformations in aqueous solution. Carbohydr. Res., 249, 281-303 (1993). https://doi.org/10.1016/0008-6215(93)84096-O
  5. Han, B.H., Han, Y.N., Park M.H., and Lee E.O., Studies on the antiinflammatory activity of Aralia continentalis (I). Arch. Pharm. Res., 6, 17-23 (1983a). https://doi.org/10.1007/BF02855697
  6. Han, B.H., Park, M.H., Han, Y.N., and Manalo, J.B., Studies on the antiinflammatory activity of Aralia continentalis (II). Arch. Pharm. Res., 6, 75-77 (1983b). https://doi.org/10.1007/BF02855705
  7. Han, B.H., Woo, E.R., Park, M,H., and Han, Y.N., Studies on the antiinflammatory activity of Aralia continentalis (III). Arch. Pharm. Res., 8, 59-65 (1985). https://doi.org/10.1007/BF02912223
  8. Han, Y.N., Kosela S., Rasad, A., Achmad, S.A., Wicaksonon, W., Baik, S.K., and Han B.H., Effects of diterpene acids on malondialdehyde generation during thrombin induced aggregation of rat platelets. Arch. Pharm. Res., 9, 189-191 (1986). https://doi.org/10.1007/BF02900005
  9. Hesse, M., Meier, H., and Zeeh, B., Spectroscopic methods in organic chemistry. Thieme. New York, pp. 137-140 (1997).
  10. Hung, T.M., Thuong, P.T., Youn, U., Zhang X., Min, B.-S., Woo, M.-H., Lee, H.-K., and Bae, K., Antioxidant activities of phenolic derivatives from Dipsacus asper Wall.(II). Nat. Prod. Sci., 14, 107-112 (2008).
  11. Hur, J.M., Park, J.C., and Hwang, Y.H., Aromatic acid and flavonoids from the leaves of Zanthoxylum piperium. Nat. Prod. Sci., 7, 23-26 (2001).
  12. Jeong, S.I., Han, W.S., Yun, Y.H., and Kim, K.J., Continentalic acid from Aralia continentalis shows activity against methicillin-resistant Staphylococcus aureus. Phytother. Res., 20, 511-514 (2006). https://doi.org/10.1002/ptr.1894
  13. Jung, H.A., Lee, E.J., Kim, J.S., Kang, S.S., Lee, J.-H., Min, B.-S., and Choi, J.S., Cholinesterase and BACE1 inhibitory diterpenoids from Aralia cordata, Arch. Pharm. Res., 32, 1399-1408 (2009). https://doi.org/10.1007/s12272-009-2009-0
  14. Kang, S.S., Chemistry and biological activity of the constituents from Aralia species. Ann. Rept. Nat. Prod. Sci., 5, 1-26 (1997).
  15. Kicha, A.A., Ivanchina, N.V., Kalinovsky, A.I., Dmitrenok, P.S., and Stonik, V.A., Alkaloidosteroids from the starfish Lethasterias nanimensis chelifera. Tetrahedron Lett., 44, 1935-1937 (2003). https://doi.org/10.1016/S0040-4039(03)00088-1
  16. Kim, J.S., Kang, S.S., Choi, J.S., Lee, M.W., and Lee, T.S., Antioxidant components from Aralia continentialis. Kor. J. Pharmacogn., 29, 13- 17 (1998).
  17. Kim, J. S., Kang, S.S., Lee, M.W., and Kim, O.K., Isolation of flavonoids from the leaves of Aralia continentalis. Kor. J. Pharmacogn., 26, 239-243 (1995).
  18. Kwon, T.O., Jeong, S.I., Kwon, J.W., Kim, Y.C., and Jang, S.I., Continentalic acid from Aralia continentalis induces growth inhibition and apoptosis in HepG2 cells. Arch. Pharm. Res., 31, 1172-1178 (2008). https://doi.org/10.1007/s12272-001-1285-3
  19. Lim, E.K., Higgins, G.S., Li,Y., and Bowles, J., Regioselectivity of glucosylation of caffeic acid by a UDP-glucose:glucosyltransferase is maintained in planta. Biochem. J., 373, 987-992 (2003). https://doi.org/10.1042/BJ20021453
  20. Nakatani, N., Kayano, S., Kikuzaki, H., Sumono, K., Katagiri, K., and Mitani, T., Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in Prune (Prunus domestica L.). J. Agric. Food Chem., 48, 5512-5516 (2000). https://doi.org/10.1021/jf000422s
  21. Okuyama, E., Nishimura, S., and Yamazaki, M., Analgesic principles from Aralia cordata Thunb. Chem. Pharm. Bull., 39, 405-407 (1991). https://doi.org/10.1248/cpb.39.405
  22. Park, H.J., Hong, M.S., Lee, J.S, Leem, K.H, Kim, C.J., Kim, J.W., and Lim, S., Effects of Aralia continentalis on hyperalgesia with peripheral inflammation. Phytother. Res., 19, 511-513 (2005). https://doi.org/10.1002/ptr.1693
  23. Perry, L.M., Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses, The MIT press, Cambridge, pp. 41 (1980).
  24. Sierzputowska-Gracz, H., Sochacka, E., Malkiewicz, A., Kuo, K., Gehrke, C.W., and Agris, P.F., Chemistry and structure of modified uridines in the anticodon, wobble position of transfer RNA are determined by thiolation. J. Am. Chem. Soc., 109, 7171-7177 (1987). https://doi.org/10.1021/ja00257a044
  25. Spilsberg, B., Rise, F., Petersen, D., and Nissen-Meyer, J., Thymidine secretion by hydridoma and myeloma cells. Biochem. Biophys. Res. Commun., 342, 221-226 (2006). https://doi.org/10.1016/j.bbrc.2006.01.120
  26. Tatefuji, T., Izumi, N., Ohta, T., Arai, S., Ikeda, M., and Kurimoto, M., Isolation and identification of compounds from Brazillian propolis which enhance macrophage spreading and mobility. Biol. Pharm. Bull., 19, 966-970 (1996).
  27. Tschesche, R., Jenssen, H. and Rangachari, P.N.; Uber umsetzungsprodukte des L-tryptophans bei der sauren eiweisshydrolyse. Chem. Ber., 91, 1732 (1958). https://doi.org/10.1002/cber.19580910824
  28. Wang, G., Liu, J., Cao, H., Liu, W., Wang, G., and Xu, J., Studies of pharmacology of changbaicongmu (Aralia continentalis) III. Effects of volatile oil of Aralia continentalis on the central nerve system. Zhongcaoyao, 19, 77-79 (1988).