Influence of Nutrient Supply on Growth, Mineral Nutrients and Carbohydrates in Cucumber (Cucumis sativus L.)

무기영양액 농도 차이가 오이 생육, 무기성분 흡수 및 탄수화물 합성에 미치는 영향

  • Sung, Jwa-Kyung (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Park, Sung-Yong (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Su-Yeon (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ye-Jin (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Lee, Ju-Young (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Jang, Byong-Choon (Division of Soil and Fertilizer Management, NAAS, RDA) ;
  • Goh, Hyun-Gwan (International Agriculture R&D Team, RDA) ;
  • Ok, Yong-Sik (Department of Biological Environment, Kangwon National University) ;
  • Kim, Tae-Wan (Department of Plant Resources and Science, Hankyong National University) ;
  • Song, Beom-Heon (Department of Plant Resources, Chungbuk National University)
  • 성좌경 (국립농업과학원 토양비료관리과) ;
  • 박성용 (국립농업과학원 토양비료관리과) ;
  • 이수연 (국립농업과학원 토양비료관리과) ;
  • 이예진 (국립농업과학원 토양비료관리과) ;
  • 이주영 (국립농업과학원 토양비료관리과) ;
  • 장병춘 (국립농업과학원 토양비료관리과) ;
  • 고현관 (농촌진흥청 국외농업기술팀) ;
  • 옥용식 (강원대학교 생물환경학과) ;
  • 김태완 (한경대학교 식물자원과학과) ;
  • 송범헌 (충북대학교 식물자원학과)
  • Received : 2010.01.29
  • Accepted : 2010.02.10
  • Published : 2010.02.28

Abstract

We investigated the growth of cucumber plants, the uptake and use of mineral nutrients, such as $NO_3$-N, $NH_4$-N, $K^+$, $Ca^{+}^{+}$, $Mg^{+}^{+}$ and $Na^+$, absorbed from media solution, and the synthesis and distribution of soluble sugars under nutrient-deficient condition. Difference in plant growth revealed after 20 days of treatment. Nitrate uptake in nutrient-deficient condition was significantly reduced compared with nutrient-normal treatment, and its distribution was primarily in petioles, stem, roots and less in leaves. In contrast, ammonium content was markedly predominated in fast growing organs, and it was significantly different in growing leaves, expanded leaves, and roots under similar growth conditions. $K^+$, lack by deficient nutrient condition, was found in growing leaves. The $Ca^{+}^{+}$ content did not show significant difference between treatments and a substantial portion of $Ca^{+}^{+}$ remained in petioles. The $Mg^{+}^{+}$ content was significantly higher in the leaves of nutrient-normal condition compared with nutrient-deficient condition while significantly lower in stem and roots. The behavior of $Na^+$ in plant was similar to $K^+$ although its content was relatively little. The highest $CO_2$ assimilation was observed in fully expanded leaves of nutrient-normal condition, which was 1.7 times higher compared with nutrient-deficient condition. The instantaneous water use efficiency (A/E) and the A/gsratio, which is an index of leaf intrinsic water use efficiency for individual leaves, was 1.2 and 1.1 times higher, respectively. The total soluble sugar (TSS) contents were highest in leaves followed by petioles, stems and roots, and in younger leaves. The growing leaves contained about 7,200 mg $kg^{-1}$ of TSS in nutrient-normal condition whereas the TSS contents in nutrient-deficient condition were not significantly different between leaves. The $Mg^{+}^{+}$ and $NH_4$- N were positively correlated with the TSS whereas $NO_3$ - N was negatively correlated.

오이의 부위별 생체분석을 통하여 영양진단 가능성을 검토코자, 무기영양액의 양분농도가 결핍된 조건(1/10 Ross 용액) 하에서 오이의 생육, 무기성분의 흡수 및 탄수화물 합성에 관하여 조사하였다. 양분결핍에 의한 오이 생육저해는 처리 후 20일에 나타났다. 양분결핍조건에서 질산태 질소의 흡수는 정상조건에 비해 크게 감소하였으며, 질산태 질소함량은 잎보다 엽병과 줄기에서 높았다. 반면, 암모늄태 질소함량은 생장엽병 및 생장엽에서 뿌리보다 높았다. 양분결핍에 의한 칼리 부족은 생장엽에서 나타났다. 칼슘은 처리간에 유의적인 차이를 보이지 않았으며, 주로 엽병에 분포하였다. 마그네슘은 줄기나 뿌리보다는 잎에 다량 존재하였으며, 나트륨은 칼리와 유사한 경향을 보였으나 함량은 매우 낮았다. 이산화탄소 동화율은 정상 양분조건의 완전생장엽에서 가장 높았으며, 양분결핍조건과 비교할 때 약 1.7배 컸다. 수분이용효율은 처리간에 유의적인 차이는 보이지 않았으나, 정상 양분조건에서 약간 높았다. 수용성 당 함량은 잎에서 가장 높았고, 엽병, 줄기 및 뿌리의 순으로 나타났으며, 오래된 조직보다는 어린 조직에서 높았다. 정상 양분조건의 생장엽에서 측정된 수용성 당 함량은 약 7,200 mg $kg^{-1}$ 이었다. 무기성분과 수용성 당과의 상관관계를 알아본 결과, 마그네슘과 암모늄태 질소가 수용성 당과 고도의 정의 상관관계를 보였다.

Keywords

References

  1. Alexander, J.D., J.R. Donnelly, and J.B. Shane. 1995. Photosynthetic and transpirational responses of red spruce understory trees to light and temperature. Tree Physiol. 15 : 393-398. https://doi.org/10.1093/treephys/15.6.393
  2. Cizkova, H., J. Lukavska, K. Priban, J. Kopecky, and H. Brabcova. 1996. Carbohydrate levels in rhizomes of Phragmites australis at an oligotrophic and a eutrophic site: a preliminary study. Folia Geobot. Phytotx. 31:111-118. https://doi.org/10.1007/BF02804000
  3. Elamin, O.M., and G.E. Wilcox. 1986. Effect of soil acidity and magnesium on muskmelon leaf composition and fruit yield. J. Am. Soc. Hortic. Sci. 111:682-685.
  4. Elamin, O.M., and G.E. Wilcox. 1989. Effect of magnesium and manganese nutrition on watermelon growth and manganese toxicity. J. Am. Soc. Hortic. Sci. 114:588-593.
  5. Franceschi, V.R. 1989. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148 : 130-137. https://doi.org/10.1007/BF02079332
  6. Frost, D.J., and D.W. Kretchman. 1989. Calcium deficiency reduces cucumber fruit and seed quality. J. Am. Soc. Hortic. Sci. 114:522-556.
  7. Horner, H.T., and B.L. Wagner. 1995. Calcium oxalate formation in higher plants. In SR Khan, ed, Calcium Oxalate in Biological Systems. CRC Press, Boca Raton. FL. p 53-72.
  8. Issa, M., G. Ouzounidou, H. Maloupa, and H. I. Constantinidou. 2001. Seasonal and diurnal photosynthetic responses of two gerbera cultivars to different substrates and heating systems. Sci. Hortic. 88 : 215-234. https://doi.org/10.1016/S0304-4238(00)00206-5
  9. Kohl, J.G., P. Woitke, H. Kühl, M. Dewender, and G. Konig. 1998. Seasonal changes in dissolved amino acids and sugars in basal culm internodes as physiological indicators of the C/N-balance of Phragmites australis at littoral sites of different trophic status. Aquat. Bot. 60:221-240. https://doi.org/10.1016/S0304-3770(97)00096-X
  10. Lenka, S.V., E. Tylova, A. Soukup, H. Novicka, O. Votrubova, H. Lipavska, and H. Cizkova. 2006. Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia. Envir. Experi. Botany. 57:246-257. https://doi.org/10.1016/j.envexpbot.2005.06.003
  11. Lorenz, O.A., and D.N. Maynard. 1988. Handbook for vegetable growers. 3rd ed. John Wiley & Sons, New York.
  12. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press. London. pp. 889
  13. MIFAFF. 2008. Food, agriculture, forestry and fisheries statistical yearbook. www.mifaff. go. kr
  14. Moustakas, M., G. Ouzounidou, L. Symeonidis, and S. Karataglis. 1997. Field study of the effects of excess copper on wheat photosynthesis and productivity. Soil. Sci. Plant Nutr. 43 : 531-539. https://doi.org/10.1080/00380768.1997.10414780
  15. Nakata, P.A. 2003. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 164 : 901-909. https://doi.org/10.1016/S0168-9452(03)00120-1
  16. Navarro, A.A., and S.J. Locascio. 1979. Copper nutrition of cucumber (Cucumis sativus L.) as influenced by fertilizer placement, phosphorus rate, and phosphorus source. Soil Crop Sci. Soc. Fla. Proc. 39:16-19.
  17. Pankovic, D., Z. Sakac, S. Kevresan, and M. Plesnicar. 1999. Acclimation to long term water deficit in the leaves of two sun flower hybrids: photosynthesis, electron transport and carbon metabolism. J. Exp. Bot. 50 : 127-138. https://doi.org/10.1093/jexbot/50.330.127
  18. Paul M.J., and M. Stitt. 1993. Effectsof nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant, Cell and Environment. 16:1047-1057. https://doi.org/10.1111/j.1365-3040.1996.tb02062.x
  19. Roe, J. H. 1955. The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212 : 335-343.
  20. Scheible, W.R., A. Gonzalez-Fontes, M. Lauerer, B. Muller- Rober, M. Caboche, and M. Stitt. 1997. Nitrate acts as a signal to induce organic acid metabolism and repress starch metgabolism in tobacco. Plant Cell. 9:783-798. https://doi.org/10.1105/tpc.9.5.783
  21. Shear, C.B. 1975. Calcium related disorders of fruits and vegetables. HortScience 10:361-365.
  22. Syros, T., T. Yupsanis, M. Omirou, and A. Economou. 2004. Photosynthitic response and peroxidases in relation to water and nutrient deficiency in gerbera. Env. Exp. Bot. 48 : 43-49.
  23. Webb, M.A. 1999. Cell mediated crystallization of calcium oxalate in plants. Plant Cell 11 : 751-761. https://doi.org/10.1105/tpc.11.4.751
  24. Yeh, D.M., L. Lin and C.J. Wright. 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot-root ratio of Spathiphyllum. Sci. Hort. 86 : 223-233. https://doi.org/10.1016/S0304-4238(00)00152-7