Influence of Continious Application of Gypsum, Popped Rice Hull, and Zeolite on Soil Aggregation of Reclaimed Sandy Loam Soils

석고, 팽화왕겨 및 제오라이트 연속시용이 간척지 세사양토의 입단화에 미치는 영향

  • Baek, Seung-Hwa (Department of Biofood Science and Biotechnology, Chungbuk Provincial University of Science & Technology) ;
  • Kim, Jae-Young (Department of Food Environmental and Science, College of Life Science and Natural Resources, Wonkwang University) ;
  • Lee, Sang-Uk (Department of Food Environmental and Science, College of Life Science and Natural Resources, Wonkwang University) ;
  • Kim, Seong-Jo (Department of Food Environmental and Science, College of Life Science and Natural Resources, Wonkwang University)
  • 백승화 (충북도립대학 바이오식품생명과학과) ;
  • 김재영 (원광대학교 식품환경학과) ;
  • 이상욱 (원광대학교 식품환경학과) ;
  • 김성조 (원광대학교 식품환경학과)
  • Received : 2010.10.22
  • Accepted : 2010.10.25
  • Published : 2010.10.30

Abstract

We investigated influence of continious application of gypsum (G: $CaSO_4{\cdot}2H_2O$), popped rice hulls (H) and zeolite (Z) on soil aggregation of reclaimed sandy loam soils. The application rates amended to fine sandy loam from reclaimed soils at Kyehwado were varied as follows:1550 (G1), 3100 (G2), 6200 (G3), 1000 (H1), 2000 (H2), 3000 (H3), and 200 (HZ1), 400 (HZ2) and 800 (HZ3) added to 1500(H) kg $10a^{-1}$, respectively. Soil aggregates were analyzed for 60, 90 and 120 days after treatments (DAT). At 60 DAT, The amount of aggregate from soil samples treated with gypsum was slightly increased with G1 while the aggregation was decreased by 4.66% for G3 for soil aggregates than thar of control. The treatments of H or HZ were effective in soil aggregation. The effect of treatment was in the order of H > HZ > G. At 90 DAT, increasing amount of gypsum attributed to decrease in soil aggregates. Therefore, we could conclude that suitable amounts of gypsum for soil aggregation in fine sandy loam might be 1550 kg $10a^{-1}$ or less. H1 increased aggregation by 7% for aggregate size between 1.0 and 2.0 mm. HZ1 was most effective in aggregation by 52.78% among the treatments while H2 and HZ3 51.50% and 48.51% at 120 DAT, respectively. As a result, we found that the effect of the treatment for soil amendments was in order of H > HZ > G.

간척지 세사양토 토양에 Bermuda grass 재배 시 토양개량제의 시용이 토양 입단화도에 미치는 효과를 보기 위하여 이수석고 1550 (G1), 3100 (G2), 6200 (G3) kg $10a^{-1}$, 팽화왕겨 1000 (H1), 2000 (H2), 3000 (H3) kg $10a^{-1}$, 팽화왕겨 1500 kg $10a^{-1}$에 zeolite를 200 (HZ1), 400 (HZ2), 800 (HZ3) kg $10a^{-1}$을 각각 조합처리 하는 등 3종의 토양개량제를 처리하고, 60, 90, 120 DAT (처리 후 경과 일수)에서 입단크기별 입단생성 정도를 분석하였다. 60 DAT 세사양토에서 이수석고 단일처리 효과는 G3경우 1.0-2.0 mm의 입단이, 무처리구 보다 4.66% 감소시키고 있어서 이수석고 시용수준은 1550 kg $10a^{-1}$이하였다. 팽화왕겨와 팽화왕겨+zeolite는 토양의 입단 증가에 기여한 효과가 뚜렷하였다. 토양개량제별 입단생성에 대한 효과는 팽화왕겨${\geq}$팽화왕겨+zeolite>이수석고>무처리 순이었다. 90 DAT에서 토양입단형성에 기여한 G1>G2>G3>무처리순으로 이수석고의 시용증가가 오히려 세사양토의 입단형성정도를 감소시켰다. 이때의 이수석고 시용수준도 1550 kg $10a^{-1}$ 이하였다. 90 DAT에서 팽화왕겨처리에 의한 토양입단형성은 이수석고 처리 경우 보다 7% 이상이 높았다. 특히 2이상과 2.0-1.0 mm의 입단의 양이 높아지고 있었다. 90 DAT에서 토양의 입단형성을 위한 팽화의 시용양은 1000 kg $10a^{-1}$ (H1) 이하였다. 팽화왕겨 1500+zeolite 200 kg $10a^{-1}$ (HZ1) 처리구가 90 DAT에서 입단화도가 52.78%로 가장 효과적이었다. 특히 2 mm 이상과 2.0-1.0 mm의 입단이 무처리구 비하여 2-4배 높았다. 120 DAT에서 팽화왕겨 2000 kg $10a^{-1}$ (H2)의 입단화도가 51.50%로 가장 높게 나타나고 있어 팽화왕겨처리는 입단형성 작용뿐만 아니라 입단유지에도 효과적이었다. 팽화왕겨처리 (1550 kg $10a^{-1}$)와 zeolite 800 kg $10a^{-1}$조합처리 구에서 48.51%의 입단화도를 나타내고 있었다. 결과적으로 계화도 세사양토의 입단형성 증가를 위한 토양개량제의 처리효과는 팽화왕겨>팽화왕겨+zeolite>이수석고 순이었다.

Keywords

References

  1. Ahn, Y., S.H. Lee, K.J. Ji, B.D. Hong, H.M. Rho, S.H. Ryu, S.M. Lee, K.H. Han, W.J. Choi, S.I. Yun, and Y.D. Choi. 2002. Studies on changes of soil characteristics and utilization after tidal land reclamation. KARICO Project No. 2002-05-09:31–41.
  2. Beare, M.H., P.F. Hendrix, and D.C. Coleman. 1994. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci. Soc. Am. J. 58:777-786. https://doi.org/10.2136/sssaj1994.03615995005800030020x
  3. Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Am. J. 50:627-633. https://doi.org/10.2136/sssaj1986.03615995005000030017x
  4. Jastrow, J.D., T.W. Boutton, and R.M. Miller. 1996. Carbon dynamics of aggregate associated organic matter estimated by carbon-13 natural abundance. Soil Sci. Soc. Am. J. 60:801-807. https://doi.org/10.2136/sssaj1996.03615995006000030017x
  5. Kim, S.J., S.H. Beak., S.U. Lee, D.G. Kim, and Y.J. Na. 2005. Effect of Gypsum, Popped Rice Hull and Zeolite on Soil Aggregation in Reclaimed Tideland, Korean J. Soil Sci. Fert. 38:231–237.
  6. NIAST (National Institute of Agricultural Science and Technology). 2000. Method of soil and plant analysis. NIAST, Rural Development Administration, Korea.
  7. Puget, P., C. Chenu, and J. Balesdent. 1995. Total and young organic matter distributions in aggregates of silty cultivated soils. Eur. J. Soil Sci. 46:449-459. https://doi.org/10.1111/j.1365-2389.1995.tb01341.x