DOI QR코드

DOI QR Code

열분해 반응조건에 따른 염화탄화수소 생성물 분포 특성

Thermal Product Distribution of Chlorinated Hydrocarbons with Pyrolytic Reaction Conditions

  • Kim, Yong-Je (Department of Environmental Engineering, Yeungnam University) ;
  • Won, Yang-Soo (Department of Environmental Engineering, Yeungnam University)
  • 투고 : 2010.05.27
  • 심사 : 2010.09.10
  • 발행 : 2010.09.30

초록

염화탄화수소 열분해와 생성물분포 특성을 고찰하기 위해 등온 관형 반응기를 이용해 두 가지 실험을 수행하였다. 첫 번째는 반응분위기에 따른 열분해 특성을 파악하기 위해 $H_2$ 또는 Ar 반응분위기에서 dichloromethane ($CH_2Cl_2$) 분해율과 생성물분포 특성을 고찰하였다. Ar 반응분위기($CH_2Cl_2$/Ar 반응계)에서 보다 $H_2$ 반응분위기($CH_2Cl_2/H_2$ 반응계)에서 $CH_2Cl_2$ 분해율이 더 높았다. 이는 반응성 기체인 $H_2$ 분위기에서 $CH_2Cl_2$ 분해를 촉진시키며 수소 첨가 탈염소반응을 통해 탈염소화된 탄화수소화합물을 생성시키며, 다환방향족탄화수소 (polycyclic aromatic hydrocarbon: PAH)와 soot 생성을 억제하기 때문이다. $CH_2Cl_2/H_2$ 반응계에서 주요생성물로 탈염소화합물인 $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4,\;HCl$ 등이 생성되었으며, 미량 생성물로 chloroethylene이 검출되었다. $CH_2Cl_2$/Ar 반응계에서는 탄소물질수지가 낮았으며 특히 반응온도 $750^{\circ}C$ 이상에서 탄소물질 수지가 더 낮게 나타났다. 주요 생성물로는 chloroethylene과 HCl이 검출되었으며, 미량 생성물로는 $CH_3Cl$$C_2H_2$이 검출되었다. 고온 Ar 반응분위기에서 $CH_4$ 주입에 따른 chloroform($CHCl_3$) 분해와 생성물분포 특성을 비교 고찰하였다. $CHCl_3$ 분해율을 비교해 보면 $CH_4$을 주입할 경우($CHCl_3/CH_4/Ar$ 반응계)가 $CH_4$을 주입하지 않았을 경우($CHCl_3$/Ar 반응계)보다 분해율이 낮았다. 이는 $CHCl_3$가 분해되면서 생성되는 활성도가 큰 이중라디칼(diradical)인 :$CCl_2$가 첨가물로 주입된 $CH_4$와 반응하여 소모됨으로써 $CHCl_3$ 분해율이 상대적으로 감소되기 때문이다. Ar 반응분위기에서 $CH_4$ 첨가 여부에 따라 $CHCl_3$이 분해되면서 생성되는 생성물 분포는 큰 차이를 나타내고 있었다. 앞에서 고찰된 각 반응계에서 분해율 비교와 생성물 분포특성을 고려하고 열화학이론 및 반응속도론을 기초로 주요 반응경로를 제시하였다.

Two sets of thermal reaction experiment for chlorinated hydrocarbons were performed using an isothermal tubular-flow reactor in order to investigate thermal decomposition, including product distribution of chlorinated hydrocarbons. The effects of $H_2$ or Ar as the reaction atmosphere on the thermal decomposition and product distribution for dichloromethane($CH_2Cl_2$) was examined. The experimental results showed that higher conversion of $CH_2Cl_2$ was obtained under $H_2$ atmosphere than under Ar atmosphere. This phenomenon indicates that reactive-gas $H_2$ reaction atmosphere was found to accelerate $CH_2Cl_2$ decomposition. The $H_2$ plays a key role in acceleration of $CH_2Cl_2$ decomposition and formation of dechlorinated light hydrocarbons, while reducing PAH and soot formation through hydrodechlorination process. It was also observed that $CH_3Cl,\;CH_4,\;C_2H_6,\;C_2H_4$ and HCl in $CH_2Cl_2/H_2$ reaction system were the major products with some minor products including chloroethylenes. The $CH_2Cl_2$/Ar reaction system gives poor carbon material balance above reaction temperature of $750^{\circ}C$. Chloroethylenes and soot were found to be the major products and small amounts of $CH_3Cl$ and $C_2H_2$ were formed above $750^{\circ}C$ in $CH_2Cl_2$/Ar. The thermal decomposition reactions of chloroform($CHCl_3$) with argon reaction atmosphere in the absence or the presence of $CH_4$ were carried out using the same tubular flow reactor. The slower $CH_3Cl$ decay occurred when $CH_4$ was added to $CH_3Cl$/Ar reaction system. This is because :$CCl_2$ diradicals that had been produced from $CHCl_3$ unimolecular dissociation reacted with $CH_4$. It appears that the added $CH_4$ worked as the :$CCl_2$ scavenger in the $CHCl_3$ decomposition process. The product distributions for $CHCl_3$ pyrolysis under argon bath gas were distinctly different for the two cases: one with $CH_4$ and the other without $CH_4$. The important pyrolytic reaction pathways to describe the important features of reagent decay and intermediate product distributions, based upon thermochemistry and kinetic principles, were proposed in this study.

키워드

참고문헌

  1. Grayson, M., Encyclopedia of Chemical Technology, Vol. 5, Wiley, NY, 2004, pp. 243-267.
  2. Pausteinbach, D. H., The Risk Assessment of Environmental and Human Health Hazards, John Wiley & Sons, N.Y., 2003, pp. 354-389.
  3. Lee, D. H., Kim, S. D., Kim, B. N., Won, Y. S., and Han, D. H., "Microwave Effect in Removal Process of NO by Electron Beam Irradiation and Quantitative Prediction of the Removed NO," Korean J. Chem. Eng., 26(6), 1601-1607 (2009). https://doi.org/10.1007/s11814-009-0343-z
  4. Lagrega, M. D., Buckingham, P. L., and Evans, J. C., Hazardous Waste Management, McGraw Hill, NJ, 2006, pp. 705-760.
  5. Won, Y. S., "Thermal Stability and Reaction Mechanism of Chloromethanes in Excess Hydrogen Atmosphere," J. Ind. Eng. Chem., 13(3), 400-405 (2007).
  6. Wu, Y. P., and Won, Y. S., "Pyrolysis of Chloromethanes," Combust. Flame, 122, 312-326 (2000). https://doi.org/10.1016/S0010-2180(00)00116-4
  7. Han, D. H., Won, Y. S., Stuchinskaya, T., Park, W. S., and Lim, J. K., "Oxidative Decomposition of Aromatic Hydrocarbons by Electron Beam Irradiation," Radiat. Phys. Chem., 67(1), 51-60 (2003). https://doi.org/10.1016/S0969-806X(02)00405-X
  8. Won, Y. S., "Thermal Decomposition of Trichloroethylene under a Reducing Atmosphere of Hydrogen," Korean J. Chem. Eng., 26(1), 36-41 (2009). https://doi.org/10.1007/s11814-009-0007-z
  9. Chuang, S. C., and Bozzelli, J. W., "Conversion of Chloroform of HCl by Reaction with Hydrogen and Water Vapor," Environ. Sci. Tech., 20, 568-574 (1986). https://doi.org/10.1021/es00148a004
  10. Won, Y. S., "Thermal Decomposition of Tetrachloroethylene With Excess Hydrogen," J. Ind. Eng. Chem., 15, 510-515 (2009). https://doi.org/10.1016/j.jiec.2009.01.007
  11. Wu, Y. P., and Won, Y. S., "Reaction Kinetics Modeling of Combustion or Pyrolysis on Chlorinated Hydrocarbons," J. Ind. Eng. Chem., 9(6), 775-786 (2003).
  12. Choi, S. P., and Won, Y. S., "Pyrolysis Reaction Pathway of Chloroform with Excess Hydrogen," J. Korean Soc. Environ. Eng., 17(2), 167-178 (1995).
  13. Ministry of Energy, Waste Management Act (2010).
  14. Won, Y. S., Lee, T. J., Wu, Y. P., and Deshusses, M. A., "An Environmentally-Friendly Method for Controlling Biomass in Biotrickling Filters for Air Pollution Control," J. Ind. Eng. Chem., 10(1), 60-65 (2004).
  15. Benson, S. W., Thermochemical Kinetics, 2nd Ed., John Willey & Sons, NY, 1976. pp. 156-204.
  16. Tsang, W., "Mechanisms for the Formation and Destruction of Chlorinated Organic Products of Incomplete Combustion," Combust. Sci. Tech., 74, 99-114 (1990). https://doi.org/10.1080/00102209008951683
  17. Kerr, J. A., and Moss, S. J., Handbook of Bimolecular and Termolecular Gas Reactions, CRC Press, Florida (1998).
  18. NIST, Chemical Gas Kinetics Database, Version 5.0 (2007).
  19. Frenklach, M., Clary, D. W., and Yuan, T., "Mechanism of Soot Formation in Acetylene and Oxygen Mixtures," Combust. Sci. Tech., 50, 79-95 (1986). https://doi.org/10.1080/00102208608923927
  20. Wang, H., Hahn, T., and Law, C. K., "Detailed Oxidation Kinetics and Flame Inhibition Effects of Chloromethane," Combust. Flame, 105, 291-302 (1996). https://doi.org/10.1016/0010-2180(95)00206-5
  21. Malanchuk, M., Report for Non-Flame Hazardous Waste Thermal Destruction, EPA-600/ 2-86-105, 1987.
  22. Won, Y. S., and Bozzelli, J. W., "Chloroform Pyrolysis: Experiment and Detailed Reaction Model," Combust. Sci. Tech., 85, 345-373 (1992). https://doi.org/10.1080/00102209208947177
  23. Tirey, D. A., Taylor, P. H., Kasner, J. and Dellinger, B., "Gas Phase Formation of Chlorinated Aromatic Compounds from Pyrolysis of Tetrachloroethylene," Combust. Sci. Tech., 74, 137-152 (1990). https://doi.org/10.1080/00102209008951685