DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of Maltooligosyltrehalose Synthase Gene from Nostoc flagelliforme

  • Wu, Shuangxiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Shen, Rongrong (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Zhang, Xiu (Department of Biology, College of Life and Environmental Science, Shanghai Normal University) ;
  • Wang, Quanxi (Department of Biology, College of Life and Environmental Science, Shanghai Normal University)
  • Received : 2009.08.03
  • Accepted : 2009.10.12
  • Published : 2010.03.31

Abstract

A genomic DNA fragment encoding a putative maltooligosyltrehalose synthase (NfMTS) for trehalose biosynthesis was cloned by the degenerate primer-PCR from cyanobacterium Nostoc flagelliforme. The ORF of NfMTS was 2,799 bp in length and encoded 933 amino acid residues constituting a 106.6 kDa protein. The deduced amino acid sequence of NfMTS contained 4 regions highly conserved for MTSs. By expression of NfMTS in E. coli, it was demonstrated that the recombinant protein catalyzed the conversion of maltohexaose to maltooligosyl trehalose. The $K_m$ of the recombinant enzyme for maltohexaose was 1.87 mM and the optimal temperature and pH of the recombinant enzyme was at $50^{\circ}C$ and 7.0, respectively. The expression of MTS of N. flagelliforme was upregulated, and both trehalose and sucrose contents increased significantly in N. flagelliforme during drought stress. However, trehalose accumulated in small quantities (about 0.36 mg/g DW), whereas sucrose accumulated in high quantities (about 0.90 mg/g DW), indicating both trehalose and sucrose were involved in dehydration stress response in N. flagelliforme and sucrose might act as a chemical chaperone rather than trehalose did during dehydration stress.

Keywords

References

  1. Allewalt, J. P., M. M. Bateson, N. P. Revsbech, K. Slack, and D. M. Ward. 2006. Effect of temperature and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the octopus spring microbial mat community of Yellowstone National Park. Appl. Environ. Microbiol. 72: 544-550. https://doi.org/10.1128/AEM.72.1.544-550.2006
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cheng, Z. J. and H. Z. Cai. 1988. A preliminary study on the early-stage development of three species of Nostoc. J. Northwest Normal Univ. 3: 41-52.
  4. Crowe, J. H., J. F. Carpenter, and L. M. Crowe. 1998. The role of vitrification in anhydrobiosis. Annu. Rev. Physiol. 60: 73-103. https://doi.org/10.1146/annurev.physiol.60.1.73
  5. Crowe, J. H., L. M. Crowe, and D. Chapman. 1984. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science 223: 701-703. https://doi.org/10.1126/science.223.4637.701
  6. Dodds, W. K., D. A. Gudder, and D. Mollenhauer. 1995. The ecology of Nostoc. J. Phycol. 31: 2-18. https://doi.org/10.1111/j.0022-3646.1995.00002.x
  7. Elbein, A. D., Y. T. Pan, I. Pastuszak, and D. Carroll. 2003. New insights on trehalose: A multifunctional molecule. Glycobiology 13: 17R-27R. https://doi.org/10.1093/glycob/cwg047
  8. Gao, K. 1998. Chinese studies on the edible blue-green alga, Nostoc flagelliforme: Review. J. Appl. Phycol. 10: 37-49. https://doi.org/10.1023/A:1008014424247
  9. Gao, K. and D. Zou. 2001. Photosynthetic bicarbonate utilization by a terrestrial cyanobacterium, Nostoc flagelliforme (Cyanophyceae). J. Phycol. 37: 768-771. https://doi.org/10.1046/j.1529-8817.2001.01039.x
  10. Higo, A., H. Katoh, K. Ohmori, M. Ikeuchi, and M. Ohmori. 2006. The role of a gene cluster for trehalose metabolism in dehydration tolerance of the filamentous cyanobacterium Anabaena sp. PCC 7120. Microbiology 152: 979-987. https://doi.org/10.1099/mic.0.28583-0
  11. Hill, D. R., A. Peat, and M. Potts. 1994. Biochemistry and structure of the glycan secreted by desiccation-tolerant Nostoc commune (cyanobacteria). Protoplasma 182: 126-148. https://doi.org/10.1007/BF01403474
  12. Itkor, P., N. Tsukagoshi, and S. Udaka. 1990. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cytodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166: 630-636. https://doi.org/10.1016/0006-291X(90)90855-H
  13. Jespersen, H. M., E. A. MacGregor, B. Henrissat, M. R. Sierks, and B. Svensson. 1993. Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic ($\beta$/$\alpha$)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791-805. https://doi.org/10.1007/BF01024938
  14. Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. J. Biochem. 280: 51-55.
  15. Kaneko, T., Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, et al. 2001. Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res. 8: 205-213. https://doi.org/10.1093/dnares/8.5.205
  16. Kubota, M., K. Maruta, and S. Fukuda. 2001. Structure and function analysis of malto-oligosyltrehalose synthase. J. Appl. Glycosci. 48: 153-161. https://doi.org/10.5458/jag.48.153
  17. Lineweaver, H. and D. Burk. 1934. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658-666. https://doi.org/10.1021/ja01318a036
  18. Lunn, J. E. 2007. Gene families and evolution of trehalose metabolism in plants. Funct. Plant Biol. 34: 550-563. https://doi.org/10.1071/FP06315
  19. MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20. https://doi.org/10.1016/S0167-4838(00)00302-2
  20. Nakada, T., K. Maruta, K. Tsusaki, M. Kubota, H. Chaen, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1995. Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci. Biotech. Biochem. 59: 2210-2214. https://doi.org/10.1271/bbb.59.2210
  21. Pan, Y. T., E. V. Koroth, W. J. Jourdian, R. Edmondson, C. J. David, I. Pastuszak, and A. D. Elbein. 2004. Trehalose synthase of Mycobacterium smegmatis: Purification, cloning, expression, and properties of the enzyme. Eur. J. Biochem. 271: 4259-4269. https://doi.org/10.1111/j.1432-1033.2004.04365.x
  22. Pang, W. T., S. X. Wu, J. Yu, and Q. X. Wang. 2007. Determination of trehalose and sucrose contents in Nostoc flagelliforme. J. Shanghai Normal Univ. (Natural Sciences Edition) 36: 73-76.
  23. Pramanik, M. H. R. and R. Imai. 2005. Functional identification of a trehalose 6-phosphate phosphatase gene that is involved in transient induction of trehalose biosynthesis during chilling stress in rice. Plant Mol. Biol. 58: 751-762. https://doi.org/10.1007/s11103-005-7404-4
  24. Ravi, K. A., N. Subhasha, M. Archana, M. K. Arvind, and P. S. Sureshwar. 2008. Trehalose-producing enzymes MTSase and MTHase in Anabaena 7120 under NaCl stress. Curr. Microbiol. 56: 429-435. https://doi.org/10.1007/s00284-008-9121-0
  25. Reed, R. H., D. L. Richardson, S. R. C. Warr, and W. D. P. Stewart. 1984. Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1-4.
  26. Saito, K., H. Yamazaki, Y. Ohnishi, S. Fujimoto, E. Takahashi, and S. Horinouchi. 1998. Production of trehalose synthase from basidiomycete, Grifola frondosa, in Escherichia coli. Appl. Microbiol. Biotechnol. 50: 193-198. https://doi.org/10.1007/s002530051276
  27. Sano, F., N. Asakawa, Y. Inoue, and M. Sakurai. 1999. A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39: 80-87. https://doi.org/10.1006/cryo.1999.2188
  28. Schiraldi, C., I. Di. Lernia, and M. De. Rosa. 2002. Trehalose production: Exploiting novel approaches. Trends Biotechnol. 20: 420-425. https://doi.org/10.1016/S0167-7799(02)02041-3
  29. Seo, J.-S., J. H. An, M.-Y. Baik, C. S. Park, J.-J. Cheong, T. W. Moon, K. H. Park, Y. D. Choi, and C. H. Kim. 2007. Molecular cloning and characterization of trehalose biosynthesis genes from hyperthermophilic archaebacterium Metallosphaera hakonesis. J. Microbiol. Biotechnol. 17: 123-129.
  30. Streeter, J. G. and M. L. Gomez. 2006. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl. Environ. Microb. 72: 4250-4255. https://doi.org/10.1128/AEM.00256-06
  31. Yoshida, T. and T. Sakamoto. 2009. Water-stress induced trehalose accumulation and control of trehalase in the cyanobacterium Nostoc punctiforme IAM M-15. J. Gen. Appl. Microbiol. 55: 135-145. https://doi.org/10.2323/jgam.55.135

Cited by

  1. Molecular Cloning of Maltooligosyltrehalose Trehalohydrolase Gene from Nostoc flagelliforme and Trehalose-Related Response to Stresses vol.21, pp.8, 2010, https://doi.org/10.4014/jmb.1101.10068
  2. Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes vol.27, pp.6, 2011, https://doi.org/10.1007/s11274-010-0584-3
  3. Differential display analysis of cDNA fragments potentially involved in Nostoc flagelliforme response to osmotic stress vol.24, pp.6, 2010, https://doi.org/10.1007/s10811-012-9806-4
  4. Comparative transcriptome analysis reveals that photosynthesis contributes to drought tolerance of Nostoc flagelliforme (Nostocales, Cyanobacteria) vol.57, pp.1, 2010, https://doi.org/10.2216/17-18.1
  5. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc flagelliforme to desiccation vol.140, pp.1, 2019, https://doi.org/10.1007/s11120-019-00629-6