DOI QR코드

DOI QR Code

Thermal Performance Evaluations of Tungsten/Yttria as Nozzle Throat Insert Material for Long Duration Firing

장시간 연소 텅스텐/이트리아 노즐목 삽입재의 내열성능 평가

  • 강윤구 (국방과학연구소 1기술본부 6부) ;
  • 박종호 (충남대학교 BK21 메카트로닉스사업단)
  • Received : 2009.11.18
  • Accepted : 2010.01.27
  • Published : 2010.02.01

Abstract

Heat-resistance of W/$Y_2O_3$ as throat insert material was evaluated to develop rocket motor keeping thrust uniformly under condition of high-temperature, high-pressure and long-burn time. Test was conducted with varying burn time, and test results were compared with CIT. Test showed that ablation rate was decreased according as burn time was increased, and that ablation rate of W/$Y_2O_3$ was about 55 % of CIT. Macro/micro structures of throat insert did not show a peculiar phenomenon by increased burn time. In addition, the vacuum heat treatment is effective for the prevention of crack in throat insert.

고온고압, 장시간 연소조건하에서 일정한 추력을 유지하는 로켓 추진기관 개발을 위해 W/$Y_2O_3$ 노즐목 삽입재를 평가하였다. 연소시간 증가에 따른 내열성능 변화를 검토하였으며, 비삭마 소재로 범용되고 있는 CIT의 내열성능과 비교하였다. 연소시간이 증가함에 따라 삭마율은 감소하는 경향을 보였으며, W/$Y_2O_3$의 삭마율은 CIT의 약 55 %이었다. 노즐목 삽입재의 육안검사와 미세조직검사에서 연소시간의 증가로 인한 특이 현상은 발견되지 않았으며, 진공 열처리는 균열 방지에 효과가 있음을 확인하였다.

Keywords

References

  1. NASA, "Solid Rocket Motor Nozzles", NASA-SP-8115, 1975.
  2. J. L. Quilici, "Nozzle Development for the Proposed AGM-130 , Rocket Motor", AIAA-84-1415, Jun., 1984.
  3. G. M. Song, Y. J. Wang, and Y. Zhou, "Evaluated Temperature Ablation Resistance and Thermophysical Properties of Tungsten Matrix Composites Reinforced with ZrC Particles", Journal of Materials Science, Vol. 36, 2001, pp. 4625-4631. https://doi.org/10.1023/A:1017989913219
  4. Olcott, E. Y. and Batchelor, "Failure Mechanisms in Dense Tungsten Alloy Rocket Nozzles", Journal of Spacecraft, Vol. 1, No. 6, 1964, pp. 635-642 https://doi.org/10.2514/3.27714
  5. Piyush Thakre, and Vigor Yang, "Chemical erosion of Refractory-Metal nozzle Inserts in Solid-Propellant Rocket Motors", AIAA-2008-1030, Jan., 2008, pp. 1-16.
  6. Justin L. Sobourin, and Richard A. Yetter, "High-Temperature Heterogeneous Reaction Kinetics of Tungsten Oxidation by CO2, CO and O2", Journal of Propulsion and Power, Vol. 25, No. 2, Mar.-Apr., 2009, pp. 490-498. https://doi.org/10.2514/1.38123
  7. R. Brogan, "Corrosion of Rocket Nozzle Metallic Throats in Oxidizing Propellant Environments", CPIA, JANNAF Propulsion Meeting, 1981, pp. 339-352.
  8. Steiner Haugen, "Non-Eroding Nozzle Throat Material for Rocket Motors with AP-Based Propellant", AIAA-98-3972, Jul., 1998.
  9. Ostrander, M. J., "Pintle Motor Challenges for Tactical Missiles", AIAA 2000-3310.
  10. M. C. L. Paterson, M. Fulcher, G. E. Hilmas, W. G. Fahrenholtz, and S. E. Landwehr, "Advanced Tactical and Boost Nozzle Materals", AIAA-2005-4497, Jul. 2005.
  11. John Napior Victoria Garmy, "Controllable Solid Propulsion for Launch Vehicle and Spacecraft Application", AIAA-2006-951
  12. Nicholas D. L. and Suresh M., "Simulation of Nozzle Erosion Process in a Solid Propellant Rocket Motor", AIAA-2007-776, Jan., 2007, pp. 1-13
  13. Kara C., "Survey of Ultra-High Temperature Materials for Applications Above 2000K", AIAA-2009-6508, Sep., 2009.
  14. 강윤구, 박종호, “장시간 연소용 초소형 저삭마 목삽입재 선정을 위한 내열성능 평가”, 한국항공우주학회지, 제 37권 12호, 2009, pp.1245-1251. https://doi.org/10.5139/JKSAS.2009.37.12.1245
  15. Y. Kim, M. H. Hong, S. H. Lee, E. P. Kim, S. Lee and J. W. Noh, "The Effect of Yttrium of Yttrium Oxide on the Sintering Behavior and Hardness of Tungsten", Met. Mat. Int., Vol. 12, No. 3, 2006. pp. 245-248. https://doi.org/10.1007/BF03027538